Genomic-Based Restriction Enzyme Selection for Specific Detection of Piscirickettsia salmonis by 16S rDNA PCR-RFLP.

Dinka Mandakovic, Benjamín Glasner, Jonathan Maldonado, Pamela Aravena, Mauricio González, Verónica Cambiazo, Rodrigo Pulgar
Author Information
  1. Dinka Mandakovic: Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile; Fondap Center for Genoma RegulationSantiago, Chile.
  2. Benjamín Glasner: Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile Santiago, Chile.
  3. Jonathan Maldonado: Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile; Fondap Center for Genoma RegulationSantiago, Chile.
  4. Pamela Aravena: Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile; Laboratorio de Genómica Aplicada, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile.
  5. Mauricio González: Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile; Fondap Center for Genoma RegulationSantiago, Chile; Laboratorio de Genómica Aplicada, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile.
  6. Verónica Cambiazo: Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile; Fondap Center for Genoma RegulationSantiago, Chile; Laboratorio de Genómica Aplicada, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile.
  7. Rodrigo Pulgar: Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile; Fondap Center for Genoma RegulationSantiago, Chile; Laboratorio de Genómica Aplicada, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile.

Abstract

The gram negative facultative bacterium P. salmonis is the etiological agent of Salmonid Rickettsial Septicaemia (SRS), a severe disease that causes important economic losses in the global salmon farmer industry. Despite efforts to control this disease, the high frequency of new epizootic events indicate that the vaccine and antibiotics treatments have limited effectiveness, therefore the preventive and diagnostic approaches must be improved. A comparison of several methodologies for SRS diagnostic indicate differences in their specificity and its capacity to detect other bacteria coexisting with P. salmonis in culture media (contamination) and fish samples (coinfection), aspects relevant for research, vaccine development and clinical diagnostic. By computer-simulation analyses, we identified a group of restriction enzymes that generate unique P. salmonis 16S rDNA band patterns, distinguishable from all other bacteria. From this information, we designed and developed a PCR-RFLP (Polymerase Chain Reaction-Restriction Fragment Length Polymorphism) assay, which was validated using 16S rDNA universal primers and restriction enzyme PmaCI for the amplification and digestion, respectively. Experimental validation was performed by comparing the restriction pattern of P. salmonis with the restriction patterns generated by bacteria that cohabit with P. salmonis (fish bacterial isolates and culture media contaminants). Our results indicate that the restriction enzyme selection pipeline was suitable to design a more specific, sensible, faster and cheaper assay than the currently used P. salmonis detection methodologies.

Keywords

References

  1. J Fish Dis. 2008 Oct;31(10):747-53 [PMID: 18681901]
  2. Appl Environ Microbiol. 2006 Jul;72(7):5069-72 [PMID: 16820507]
  3. PLoS One. 2012;7(6):e37269 [PMID: 22693625]
  4. J Fish Dis. 2015 Apr;38(4):415-8 [PMID: 24917068]
  5. Fish Shellfish Immunol. 2008 Nov;25(5):477-84 [PMID: 18691656]
  6. Int J Syst Bacteriol. 1992 Jan;42(1):120-6 [PMID: 1371057]
  7. Front Microbiol. 2014 Aug 11;5:417 [PMID: 25157247]
  8. Appl Environ Microbiol. 1995 May;61(5):1679-87 [PMID: 7544093]
  9. FEMS Immunol Med Microbiol. 2012 Jun;65(1):69-77 [PMID: 22309200]
  10. Adv Parasitol. 1996;38:1-51 [PMID: 8701794]
  11. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5088-90 [PMID: 270744]
  12. FEMS Microbiol Lett. 1992 Jun 15;72(3):227-33 [PMID: 1354195]
  13. J Clin Microbiol. 1991 Dec;29(12):2774-8 [PMID: 1684585]
  14. J Fish Dis. 2014 Mar;37(3):163-88 [PMID: 24279295]
  15. J Clin Microbiol. 1993 Aug;31(8):2061-5 [PMID: 8396586]
  16. Mol Biol Evol. 2013 Dec;30(12):2725-9 [PMID: 24132122]
  17. Appl Environ Microbiol. 2013 Oct;79(19):5962-9 [PMID: 23872556]
  18. PLoS One. 2014 Apr 15;9(4):e95397 [PMID: 24736323]
  19. Appl Environ Microbiol. 1994 Mar;60(3):871-9 [PMID: 7512808]
  20. Jundishapur J Microbiol. 2014 Sep;7(9):e19135 [PMID: 25485068]
  21. J Vet Diagn Invest. 2008 Mar;20(2):213-4 [PMID: 18319435]
  22. FEMS Microbiol Lett. 2008 Jan;278(1):43-7 [PMID: 18028392]
  23. Nucleic Acids Res. 2010 Apr;38(7):2145-53 [PMID: 20047958]
  24. Appl Environ Microbiol. 2006 Jun;72(6):3832-45 [PMID: 16751487]
  25. Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5 [PMID: 19004872]
  26. Expert Rev Mol Diagn. 2014 May;14(4):489-500 [PMID: 24724586]
  27. Nucleic Acids Res. 2007;35(21):7188-96 [PMID: 17947321]
  28. PLoS One. 2013 Sep 05;8(9):e71830 [PMID: 24039723]
  29. Appl Environ Microbiol. 2004 Jul;70(7):4393-7 [PMID: 15240328]
  30. Genome Announc. 2014 Dec 18;2(6):null [PMID: 25523762]
  31. BMC Genomics. 2015 Jul 04;16:495 [PMID: 26141111]
  32. Dis Aquat Organ. 2012 Jan 24;97(3):197-205 [PMID: 22422090]
  33. J Biotechnol. 2015 Oct 20;212:30-1 [PMID: 26220311]
  34. Mol Biol Rep. 2015 Aug;42(8):1323-32 [PMID: 25860079]
  35. Appl Environ Microbiol. 1998 Aug;64(8):3066-9 [PMID: 9687475]

Word Cloud

Created with Highcharts 10.0.0salmonisPrestriction16SrDNAindicatediagnosticbacteriaPCR-RFLPSRSdiseasevaccinemethodologiesculturemediafishcomputer-simulationanalysesenzymespatternsassayenzymePiscirickettsiagramnegativefacultativebacteriumetiologicalagentSalmonidRickettsialSepticaemiaseverecausesimportanteconomiclossesglobalsalmonfarmerindustryDespiteeffortscontrolhighfrequencynewepizooticeventsantibioticstreatmentslimitedeffectivenessthereforepreventiveapproachesmustimprovedcomparisonseveraldifferencesspecificitycapacitydetectcoexistingcontaminationsamplescoinfectionaspectsrelevantresearchdevelopmentclinicalidentifiedgroupgenerateuniquebanddistinguishableinformationdesigneddevelopedPolymeraseChainReaction-RestrictionFragmentLengthPolymorphismvalidatedusinguniversalprimersPmaCIamplificationdigestionrespectivelyExperimentalvalidationperformedcomparingpatterngeneratedcohabitbacterialisolatescontaminantsresultsselectionpipelinesuitabledesignspecificsensiblefastercheapercurrentlyuseddetectionGenomic-BasedRestrictionEnzymeSelectionSpecificDetection

Similar Articles

Cited By