Indirect Fitness Benefits Enable the Spread of Host Genes Promoting Costly Transfer of Beneficial Plasmids.

Tatiana Dimitriu, Dusan Misevic, Chantal Lotton, Sam P Brown, Ariel B Lindner, François Taddei
Author Information
  1. Tatiana Dimitriu: Institut National de la Santé et de la Recherche Médicale, U1001, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
  2. Dusan Misevic: Institut National de la Santé et de la Recherche Médicale, U1001, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
  3. Chantal Lotton: Institut National de la Santé et de la Recherche Médicale, U1001, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
  4. Sam P Brown: Georgia Institute of Technology, School of Biology, Atlanta, Georgia, United States of America.
  5. Ariel B Lindner: Institut National de la Santé et de la Recherche Médicale, U1001, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
  6. François Taddei: Institut National de la Santé et de la Recherche Médicale, U1001, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.

Abstract

Bacterial genes that confer crucial phenotypes, such as antibiotic resistance, can spread horizontally by residing on mobile genetic elements (MGEs). Although many mobile genes provide strong benefits to their hosts, the fitness consequences of the process of transfer itself are less clear. In previous studies, transfer has been interpreted as a parasitic trait of the MGEs because of its costs to the host but also as a trait benefiting host populations through the sharing of a common gene pool. Here, we show that costly donation is an altruistic act when it spreads beneficial MGEs favoured when it increases the inclusive fitness of donor ability alleles. We show mathematically that donor ability can be selected when relatedness at the locus modulating transfer is sufficiently high between donor and recipients, ensuring high frequency of transfer between cells sharing donor alleles. We further experimentally demonstrate that either population structure or discrimination in transfer can increase relatedness to a level selecting for chromosomal transfer alleles. Both mechanisms are likely to occur in natural environments. The simple process of strong dilution can create sufficient population structure to select for donor ability. Another mechanism observed in natural isolates, discrimination in transfer, can emerge through coselection of transfer and discrimination alleles. Our work shows that horizontal gene transfer in bacteria can be promoted by bacterial hosts themselves and not only by MGEs. In the longer term, the success of cells bearing beneficial MGEs combined with biased transfer leads to an association between high donor ability, discrimination, and mobile beneficial genes. However, in conditions that do not select for altruism, host bacteria promoting transfer are outcompeted by hosts with lower transfer rate, an aspect that could be relevant in the fight against the spread of antibiotic resistance.

Associated Data

figshare | 10.6084/m9.figshare.3199252

References

  1. Nature. 2000 Apr 6;404(6778):598-601 [PMID: 10766241]
  2. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 [PMID: 10829079]
  3. EMBO Rep. 2001 May;2(5):376-81 [PMID: 11375927]
  4. Genetics. 2002 Dec;162(4):1525-32 [PMID: 12524329]
  5. J Bacteriol. 1953 Feb;65(2):113-21 [PMID: 13034700]
  6. Genetics. 1965 Jan;51:137-48 [PMID: 14258067]
  7. Genetics. 2003 Dec;165(4):1641-9 [PMID: 14704155]
  8. J Gen Microbiol. 1992 Jan;138(1):17-21 [PMID: 1556548]
  9. Nat Rev Microbiol. 2005 Sep;3(9):722-32 [PMID: 16138100]
  10. Mol Syst Biol. 2006;2:2006.0008 [PMID: 16738554]
  11. Curr Biol. 2006 Oct 24;16(20):2048-52 [PMID: 17055985]
  12. Genetics. 1931 Mar;16(2):97-159 [PMID: 17246615]
  13. Genetics. 1977 Oct;87(2):209-28 [PMID: 17248761]
  14. Science. 2007 Jan 26;315(5811):476-80 [PMID: 17255503]
  15. Philos Trans R Soc Lond B Biol Sci. 2007 Jul 29;362(1483):1135-48 [PMID: 17360279]
  16. Curr Biol. 2007 Aug 21;17(16):R661-72 [PMID: 17714660]
  17. Appl Environ Microbiol. 2008 May;74(10):3189-97 [PMID: 18378654]
  18. FEMS Microbiol Ecol. 2008 Sep;65(3):361-71 [PMID: 18616581]
  19. Science. 2008 Dec 19;322(5909):1843-5 [PMID: 19095942]
  20. Science. 2009 Jan 9;323(5911):272-5 [PMID: 19131632]
  21. ISME J. 2009 Jul;3(7):761-9 [PMID: 19340086]
  22. Philos Trans R Soc Lond B Biol Sci. 2009 Aug 12;364(1527):2275-89 [PMID: 19571247]
  23. Curr Biol. 2009 Nov 3;19(20):1683-91 [PMID: 19800234]
  24. Heredity (Edinb). 2011 Jan;106(1):1-10 [PMID: 20332804]
  25. Future Microbiol. 2010 Jul;5(7):1057-71 [PMID: 20632805]
  26. J Evol Biol. 2011 May;24(5):1020-43 [PMID: 21371156]
  27. MBio. 2011 Mar 15;2(2):null [PMID: 21406598]
  28. Antimicrob Agents Chemother. 2011 Aug;55(8):3649-60 [PMID: 21576439]
  29. BMC Evol Biol. 2011 May 19;11:130 [PMID: 21595903]
  30. Biol Lett. 2011 Dec 23;7(6):902-5 [PMID: 21632619]
  31. Annu Rev Microbiol. 2011;65:349-67 [PMID: 21682642]
  32. Curr Opin Microbiol. 2011 Oct;14(5):615-23 [PMID: 21856213]
  33. Q Rev Biol. 1990 Mar;65(1):3-22 [PMID: 2186429]
  34. Evolution. 2011 Oct;65(10):2760-70 [PMID: 21967419]
  35. Proc Biol Sci. 2013 May 01;280(1761):20130400 [PMID: 23760639]
  36. J Evol Biol. 2013 Sep;26(9):1854-65 [PMID: 23848844]
  37. Evol Appl. 2013 Sep;6(6):925-32 [PMID: 24062801]
  38. PLoS Genet. 2013;9(9):e1003844 [PMID: 24086164]
  39. Trends Ecol Evol. 2014 Jan;29(1):33-41 [PMID: 24148292]
  40. Elife. 2013 Nov 12;2:e00960 [PMID: 24220506]
  41. Nat Rev Microbiol. 2014 Apr;12(4):300-8 [PMID: 24625893]
  42. Front Cell Infect Microbiol. 2014 Apr 29;4:54 [PMID: 24809026]
  43. Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):11103-8 [PMID: 25024219]
  44. J Bacteriol. 2015 Jan;197(2):337-42 [PMID: 25384481]
  45. MBio. 2015 Jun 02;6(3):e00586 [PMID: 26037122]
  46. Nat Commun. 2015 Nov 23;6:8924 [PMID: 26592443]
  47. MBio. 2015 Dec 15;6(6):e01302-15 [PMID: 26670382]
  48. Evolution. 1998 Apr;52(2):315-329 [PMID: 28568337]
  49. Nature. 1970 Dec 19;228(5277):1218-20 [PMID: 4395095]
  50. J Bacteriol. 1973 Jan;113(1):58-70 [PMID: 4567141]
  51. Ann Hum Genet. 1972 Apr;35(4):485-90 [PMID: 5073694]
  52. Nature. 1970 Aug 1;227(5257):520-1 [PMID: 5428476]
  53. J Theor Biol. 1964 Jul;7(1):1-16 [PMID: 5875341]
  54. Nature. 1967 May 27;214(5091):885-7 [PMID: 6054969]
  55. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7203-6 [PMID: 6095273]
  56. Mol Gen Genet. 1980;178(3):573-81 [PMID: 6993854]
  57. J Bacteriol. 1982 Apr;150(1):141-7 [PMID: 7061390]
  58. J Theor Biol. 1994 Oct 21;170(4):393-400 [PMID: 7996864]
  59. J Theor Biol. 1996 May 7;180(1):27-37 [PMID: 8763356]
  60. Science. 1997 Sep 5;277(5331):1453-62 [PMID: 9278503]
  61. J Mol Biol. 1998 Mar 27;277(2):309-16 [PMID: 9514749]

MeSH Term

Algorithms
Bacteria
Conjugation, Genetic
Drug Resistance, Bacterial
Escherichia coli
Evolution, Molecular
Gene Transfer, Horizontal
Genes, Bacterial
Genetic Fitness
Genetics, Population
Interspersed Repetitive Sequences
Models, Genetic
Plasmids
Selection, Genetic

Word Cloud

Created with Highcharts 10.0.0transfercandonorMGEsabilityallelesdiscriminationgenesmobilehostshostbeneficialhighantibioticresistancespreadstrongfitnessprocesstraitsharinggeneshowrelatednesscellspopulationstructurenaturalselectbacteriaBacterialconfercrucialphenotypeshorizontallyresidinggeneticelementsAlthoughmanyprovidebenefitsconsequenceslessclearpreviousstudiesinterpretedparasiticcostsalsobenefitingpopulationscommonpoolcostlydonationaltruisticactspreadsfavouredincreasesinclusivemathematicallyselectedlocusmodulatingsufficientlyrecipientsensuringfrequencyexperimentallydemonstrateeitherincreaselevelselectingchromosomalmechanismslikelyoccurenvironmentssimpledilutioncreatesufficientAnothermechanismobservedisolatesemergecoselectionworkshowshorizontalpromotedbacteriallongertermsuccessbearingcombinedbiasedleadsassociationHoweverconditionsaltruismpromotingoutcompetedlowerrateaspectrelevantfightIndirectFitnessBenefitsEnableSpreadHostGenesPromotingCostlyTransferBeneficialPlasmids

Similar Articles

Cited By