Innate immune evasion strategies of DNA and RNA viruses.

Dia C Beachboard, Stacy M Horner
Author Information
  1. Dia C Beachboard: Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
  2. Stacy M Horner: Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA. Electronic address: stacy.horner@duke.edu.

Abstract

Upon infection, both DNA and RNA viruses can be sensed by pattern recognition receptors (PRRs) in the cytoplasm or the nucleus to activate antiviral innate immunity. Sensing of viral products leads to the activation of a signaling cascade that ultimately results in transcriptional activation of type I and III interferons, as well as other antiviral genes that together mediate viral clearance and inhibit viral spread. Therefore, in order for viruses to replicate and spread efficiently, they must inhibit the host signaling pathways that induce the innate antiviral immune response. In this review, we will highlight recent advances in the understanding of the mechanisms by which viruses evade PRR detection, intermediate signaling molecule activation, transcription factor activation, and the actions of antiviral proteins.

References

  1. Sci Signal. 2009 Aug 18;2(84):ra47 [PMID: 19690333]
  2. PLoS Pathog. 2012;8(10):e1002934 [PMID: 23055924]
  3. Immunity. 2013 Dec 12;39(6):1132-42 [PMID: 24269171]
  4. Immunity. 2013 Mar 21;38(3):437-49 [PMID: 23499489]
  5. Cell Host Microbe. 2012 May 17;11(5):528-37 [PMID: 22607805]
  6. Nat Rev Microbiol. 2011 Dec 05;10(1):51-65 [PMID: 22138959]
  7. PLoS Pathog. 2012;8(11):e1003059 [PMID: 23209422]
  8. J Virol. 2015 Nov 25;90(3):1613-21 [PMID: 26608321]
  9. Nature. 2006 May 4;441(7089):101-5 [PMID: 16625202]
  10. Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):E4306-15 [PMID: 26199418]
  11. Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):E1773-81 [PMID: 25831530]
  12. Nature. 2011 Apr 28;472(7344):481-5 [PMID: 21478870]
  13. J Virol. 2015 Aug;89(16):8406-15 [PMID: 26041281]
  14. Curr Opin Microbiol. 2015 Aug;26:1-9 [PMID: 25795286]
  15. PLoS One. 2014 May 01;9(5):e95627 [PMID: 24788809]
  16. Nature. 2015 Apr 23;520(7548):553-7 [PMID: 25642965]
  17. Cytokine Growth Factor Rev. 2014 Dec;25(6):669-79 [PMID: 25212897]
  18. Cell Host Microbe. 2014 Jul 9;16(1):31-42 [PMID: 25011106]
  19. Science. 2003 May 16;300(5622):1145-8 [PMID: 12702807]
  20. J Virol. 2014 May;88(10):5213-6 [PMID: 24623415]
  21. PLoS Pathog. 2015 Dec 30;11(12):e1005350 [PMID: 26717518]
  22. Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):E3008-17 [PMID: 23027953]
  23. Cell Host Microbe. 2016 Feb 10;19(2):150-8 [PMID: 26867174]
  24. Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6413-8 [PMID: 24733894]
  25. Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):2992-7 [PMID: 15710891]
  26. PLoS Pathog. 2013;9(8):e1003533 [PMID: 23950712]
  27. J Gen Virol. 2015 Oct;96(10):3049-3058 [PMID: 26253126]
  28. Nature. 2010 Nov 18;468(7322):452-6 [PMID: 21085181]
  29. J Virol. 2009 Apr;83(7):3069-77 [PMID: 19153231]
  30. Nat Immunol. 2016 May;17(5):523-30 [PMID: 26998762]
  31. Sci Rep. 2014 Dec 10;4:7395 [PMID: 25491663]
  32. J Virol. 2014 Apr;88(8):4251-64 [PMID: 24478444]
  33. Cell Host Microbe. 2009 May 8;5(5):439-49 [PMID: 19454348]
  34. EMBO Rep. 2010 Feb;11(2):133-8 [PMID: 20019757]
  35. J Virol. 2002 Jun;76(12):5974-84 [PMID: 12021330]
  36. Viruses. 2009 Dec;1(3):523-44 [PMID: 21994559]
  37. Cytokine Growth Factor Rev. 2014 Oct;25(5):491-505 [PMID: 25023063]
  38. Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14590-5 [PMID: 21844353]
  39. J Virol. 2014 Mar;88(6):3369-78 [PMID: 24390337]
  40. J Virol. 2008 Aug;82(16):8071-84 [PMID: 18417574]
  41. Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17717-22 [PMID: 16301520]
  42. J Virol. 2015 Jul;89(14):7028-37 [PMID: 25926657]
  43. J Virol. 2016 Mar 28;90(8):3839-3848 [PMID: 26819306]
  44. J Virol. 2012 Aug;86(15):7728-38 [PMID: 22532683]
  45. PLoS Pathog. 2013 Mar;9(3):e1003265 [PMID: 23555265]
  46. Science. 2015 Oct 30;350(6260):568-71 [PMID: 26405230]
  47. Cell Microbiol. 2007 Apr;9(4):930-8 [PMID: 17140406]
  48. PLoS Pathog. 2010 Jul 22;6(7):e1001012 [PMID: 20661427]
  49. J Virol. 2003 May;77(9):5487-92 [PMID: 12692249]
  50. Nature. 2005 Oct 20;437(7062):1167-72 [PMID: 16177806]
  51. Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):6001-6 [PMID: 16585524]
  52. Annu Rev Microbiol. 2014;68:477-92 [PMID: 25002095]
  53. Cell Host Microbe. 2014 Jul 9;16(1):19-30 [PMID: 25011105]
  54. Nat Rev Immunol. 2008 Dec;8(12):911-22 [PMID: 18989317]
  55. PLoS Pathog. 2016 Feb 10;12(2):e1005428 [PMID: 26863439]
  56. J Virol. 2015 Jul;89(13):6575-84 [PMID: 25855743]

Grants

  1. K22 AI100935/NIAID NIH HHS
  2. P30 AI064518/NIAID NIH HHS
  3. T32 CA009111/NCI NIH HHS

MeSH Term

DEAD Box Protein 58
DNA Viruses
Host-Pathogen Interactions
Humans
Immune Evasion
Immunity, Innate
Interferon Type I
RNA Viruses
Receptors, Immunologic
Receptors, Pattern Recognition
Signal Transduction

Chemicals

Interferon Type I
Receptors, Immunologic
Receptors, Pattern Recognition
RIGI protein, human
DEAD Box Protein 58

Word Cloud

Created with Highcharts 10.0.0virusesantiviralactivationviralsignalingDNARNAinnateinhibitspreadimmuneUponinfectioncansensedpatternrecognitionreceptorsPRRscytoplasmnucleusactivateimmunitySensingproductsleadscascadeultimatelyresultstranscriptionaltypeIIIinterferonswellgenestogethermediateclearanceThereforeorderreplicateefficientlymusthostpathwaysinduceresponsereviewwillhighlightrecentadvancesunderstandingmechanismsevadePRRdetectionintermediatemoleculetranscriptionfactoractionsproteinsInnateevasionstrategies

Similar Articles

Cited By (138)