Acinetobacter baumannii Genes Required for Bacterial Survival during Bloodstream Infection.

Sargurunathan Subashchandrabose, Sara Smith, Valerie DeOrnellas, Sebastien Crepin, Monica Kole, Carina Zahdeh, Harry L T Mobley
Author Information
  1. Sargurunathan Subashchandrabose: Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
  2. Sara Smith: Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
  3. Valerie DeOrnellas: Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
  4. Sebastien Crepin: Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
  5. Monica Kole: Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
  6. Carina Zahdeh: Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
  7. Harry L T Mobley: Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.

Abstract

Acinetobacter baumannii is emerging as a leading global multiple-antibiotic-resistant nosocomial pathogen. The identity of genes essential for pathogenesis in a mammalian host remains largely unknown. Using transposon-directed insertion-site sequencing (TraDIS), we identified A. baumannii genes involved in bacterial survival in a leukopenic mouse model of bloodstream infection. Mice were inoculated with a pooled transposon mutant library derived from 109,000 mutants, and TraDIS was used to map transposon insertion sites in the genomes of bacteria in the inoculum and of bacteria recovered from mouse spleens. Unique transposon insertion sites were mapped and used to calculate a fitness factor for every insertion site based on its relative abundance in the inoculum and postinfection libraries. Eighty-nine transposon insertion mutants that were underrepresented after experimental infection in mice compared to their presence in the inocula were delineated as candidates for further evaluation. Genetically defined mutants lacking feoB (ferrous iron import), ddc (d-ala-d-ala-carboxypeptidase), and pntB (pyridine nucleotide transhydrogenase subunit) exhibited a fitness defect during systemic infection resulting from bacteremia. In vitro, these mutants, as well as a fepA (ferric enterobactin receptor) mutant, are defective in survival in human serum and within macrophages and are hypersensitive to killing by antimicrobial peptides compared to the survival of the parental strain under these conditions. Our data demonstrate that FepA is involved in the uptake of exogenous enterobactin in A. baumannii. Genetic complementation rescues the phenotypes of mutants in assays that emulate conditions encountered during infection. In summary, we have determined novel A. baumannii fitness genes involved in the pathogenesis of mammalian infection. IMPORTANCE A. baumannii is a significant cause of bacterial bloodstream infection in humans. Since multiple antibiotic resistance is becoming more common among strains of A. baumannii, there is an urgent need to develop novel tools to treat infections caused by this dangerous pathogen. To develop knowledge-guided treatment approaches for A. baumannii, a thorough understanding of the mechanism by which this pathogen causes bloodstream infection is required. Here, using a mouse model of infection, we report the identification of A. baumannii genes that are critical for the ability of this pathogen to cause bloodstream infections. This study lays the foundation for future research on A. baumannii genes that can be targeted to develop novel therapeutics against this emerging human pathogen.

Keywords

References

  1. Infect Immun. 2010 May;78(5):1952-62 [PMID: 20194595]
  2. MBio. 2010 Nov 23;1(5):null [PMID: 21116344]
  3. Nat Rev Microbiol. 2013 Jul;11(7):435-42 [PMID: 23712350]
  4. Infect Immun. 2012 Oct;80(10):3381-8 [PMID: 22825448]
  5. Infect Immun. 2010 Sep;78(9):3993-4000 [PMID: 20643860]
  6. MBio. 2012 Aug 31;3(4):null [PMID: 22911967]
  7. Infect Immun. 2012 Mar;80(3):1015-24 [PMID: 22232188]
  8. PLoS One. 2012;7(8):e42761 [PMID: 22956994]
  9. PLoS Genet. 2006 Jan;2(1):e7 [PMID: 16415984]
  10. Biometals. 2009 Feb;22(1):23-32 [PMID: 19130255]
  11. MBio. 2014 Jun 03;5(3):e01163-14 [PMID: 24895306]
  12. PLoS Pathog. 2013;9(12):e1003788 [PMID: 24339777]
  13. Infect Immun. 2012 Feb;80(2):651-6 [PMID: 22104104]
  14. MBio. 2014 Aug 05;5(4):e01313-14 [PMID: 25096877]
  15. Clin Infect Dis. 2006 Mar 1;42(5):692-9 [PMID: 16447117]
  16. Infect Immun. 2009 Aug;77(8):3150-60 [PMID: 19470746]
  17. PLoS Pathog. 2012;8(12):e1003068 [PMID: 23236280]
  18. Clin Infect Dis. 2006 Sep 1;43 Suppl 2:S49-56 [PMID: 16894515]
  19. J Infect Dis. 2009 Feb 15;199(4):513-21 [PMID: 19143563]
  20. Antimicrob Agents Chemother. 2006 Sep;50(9):2941-5 [PMID: 16940085]
  21. BMC Genomics. 2011 Feb 23;12:126 [PMID: 21342532]
  22. Gene. 1992 Oct 12;120(1):89-92 [PMID: 1398128]
  23. Antimicrob Agents Chemother. 2007 Jun;51(6):2065-9 [PMID: 17420217]
  24. Genome Biol. 2009;10(3):R25 [PMID: 19261174]
  25. Cell Microbiol. 2005 Aug;7(8):1127-38 [PMID: 16008580]
  26. BMC Microbiol. 2010 Nov 09;10:279 [PMID: 21062436]
  27. FEMS Immunol Med Microbiol. 2012 Apr;64(3):403-12 [PMID: 22211672]
  28. Genome Res. 2009 Dec;19(12):2308-16 [PMID: 19826075]
  29. Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18327-32 [PMID: 25489107]
  30. N Engl J Med. 2008 Mar 20;358(12):1271-81 [PMID: 18354105]
  31. Nat Rev Microbiol. 2007 Dec;5(12):939-51 [PMID: 18007677]
  32. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 [PMID: 10829079]
  33. Clin Infect Dis. 2008 Apr 15;46(8):1254-63 [PMID: 18444865]
  34. Genes Dev. 2007 Mar 1;21(5):601-14 [PMID: 17344419]
  35. BMC Infect Dis. 2006 Mar 17;6:55 [PMID: 16545113]

Grants

  1. R21 AI107184/NIAID NIH HHS

Word Cloud

Created with Highcharts 10.0.0A baumanniiinfectiongenespathogenmutantsbloodstreamtransposoninsertionfitnessAcinetobacterbaumanniiTraDISinvolvedsurvivalmousenoveldevelopemergingpathogenesismammalianbacterialmodelmutantusedsitesbacteriainoculumcomparedbacteremiaenterobactinhumanconditionscauseinfectionsleadingglobalmultiple-antibiotic-resistantnosocomialidentityessentialhostremainslargelyunknownUsingtransposon-directedinsertion-sitesequencingidentifiedleukopenicMiceinoculatedpooledlibraryderived109000mapgenomesrecoveredspleensUniquemappedcalculatefactoreverysitebasedrelativeabundancepostinfectionlibrariesEighty-nineunderrepresentedexperimentalmicepresenceinoculadelineatedcandidatesevaluationGeneticallydefinedlackingfeoBferrousironimportddcd-ala-d-ala-carboxypeptidasepntBpyridinenucleotidetranshydrogenasesubunitexhibiteddefectsystemicresultingvitrowellfepAferricreceptordefectiveserumwithinmacrophageshypersensitivekillingantimicrobialpeptidesparentalstraindatademonstrateFepAuptakeexogenousGeneticcomplementationrescuesphenotypesassaysemulateencounteredsummarydeterminedIMPORTANCEsignificanthumansSincemultipleantibioticresistancebecomingcommonamongstrainsurgentneedtoolstreatcauseddangerousknowledge-guidedtreatmentapproachesthoroughunderstandingmechanismcausesrequiredusingreportidentificationcriticalabilitystudylaysfoundationfutureresearchcantargetedtherapeuticsGenesRequiredBacterialSurvivalBloodstreamInfectionATCC17978

Similar Articles

Cited By