Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study.

Vincent Richard, Giuliano Lamberto, Tung-Wu Lu, Aurelio Cappozzo, Raphaël Dumas
Author Information
  1. Vincent Richard: Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, UMR_T9406, LBMC, F69622, Lyon, France.
  2. Giuliano Lamberto: University of Sheffield, Department of Mechanical Engineering and INSIGNEO Institute for in Silico Medicine, Sheffield, United Kingdom.
  3. Tung-Wu Lu: National Taiwan University, Institute of Biomedical Engineering, Taipei, Taiwan.
  4. Aurelio Cappozzo: Università degli Studi di Roma - Foro Italico, Department of Movement, Human, and Health Sciences, Rome, Italy.
  5. Raphaël Dumas: Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, UMR_T9406, LBMC, F69622, Lyon, France.

Abstract

The use of multi-body optimisation (MBO) to estimate joint kinematics from stereophotogrammetric data while compensating for soft tissue artefact is still open to debate. Presently used joint models embedded in MBO, such as mechanical linkages, constitute a considerable simplification of joint function, preventing a detailed understanding of it. The present study proposes a knee joint model where femur and tibia are represented as rigid bodies connected through an elastic element the behaviour of which is described by a single stiffness matrix. The deformation energy, computed from the stiffness matrix and joint angles and displacements, is minimised within the MBO. Implemented as a "soft" constraint using a penalty-based method, this elastic joint description challenges the strictness of "hard" constraints. In this study, estimates of knee kinematics obtained using MBO embedding four different knee joint models (i.e., no constraints, spherical joint, parallel mechanism, and elastic joint) were compared against reference kinematics measured using bi-planar fluoroscopy on two healthy subjects ascending stairs. Bland-Altman analysis and sensitivity analysis investigating the influence of variations in the stiffness matrix terms on the estimated kinematics substantiate the conclusions. The difference between the reference knee joint angles and displacements and the corresponding estimates obtained using MBO embedding the stiffness matrix showed an average bias and standard deviation for kinematics of 0.9±3.2° and 1.6±2.3 mm. These values were lower than when no joint constraints (1.1±3.8°, 2.4±4.1 mm) or a parallel mechanism (7.7±3.6°, 1.6±1.7 mm) were used and were comparable to the values obtained with a spherical joint (1.0±3.2°, 1.3±1.9 mm). The study demonstrated the feasibility of substituting an elastic joint for more classic joint constraints in MBO.

References

  1. Lancet. 1986 Feb 8;1(8476):307-10 [PMID: 2868172]
  2. Comput Methods Biomech Biomed Engin. 2015;18(14):1555-63 [PMID: 24963785]
  3. Orthop Traumatol Surg Res. 2014 Nov;100(7):715-9 [PMID: 25281547]
  4. Arthroscopy. 2000 Sep;16(6):633-9 [PMID: 10976125]
  5. J Bone Joint Surg Am. 1976 Jul;58(5):583-94 [PMID: 946969]
  6. J Biomech. 2005 Mar;38(3):621-6 [PMID: 15652563]
  7. Comput Methods Biomech Biomed Engin. 2011 Aug;14(8):755-61 [PMID: 21390936]
  8. J Biomech. 2015 Nov 5;48(14):3796-802 [PMID: 26472302]
  9. Med Biol Eng Comput. 2015 Jul;53(7):655-67 [PMID: 25783762]
  10. Biomed Eng Online. 2016 Jun 07;15(1):62 [PMID: 27268070]
  11. J Biomech. 2007;40 Suppl 1:S18-24 [PMID: 17462655]
  12. Am J Sports Med. 1998 May-Jun;26(3):395-401 [PMID: 9617402]
  13. Clin Biomech (Bristol, Avon). 2010 Jun;25(5):389-96 [PMID: 20334962]
  14. J Biomech Eng. 2004 Feb;126(1):54-61 [PMID: 15171129]
  15. Stat Med. 2008 Feb 28;27(5):778-80 [PMID: 17907247]
  16. Med Biol Eng Comput. 2007 Mar;45(3):315-22 [PMID: 17252233]
  17. J Biomech. 2011 Apr 7;44(6):1182-8 [PMID: 21296352]
  18. J Biomech. 2006;39(11):2087-95 [PMID: 16085076]
  19. Comput Methods Biomech Biomed Engin. 2010;13(2):171-83 [PMID: 19693717]
  20. J Biomech. 2002 Apr;35(4):543-8 [PMID: 11934426]
  21. Comput Methods Biomech Biomed Engin. 2012;15 Suppl 1:183-5 [PMID: 23009472]
  22. Comput Methods Biomech Biomed Engin. 2015;18(4):339-50 [PMID: 23682906]
  23. J Biomech. 2013 Nov 15;46(16):2757-60 [PMID: 24094718]
  24. Gait Posture. 2011 Apr;33(4):706-11 [PMID: 21458992]
  25. J Biomech. 2015 Apr 13;48(6):1141-6 [PMID: 25655463]
  26. Gait Posture. 2005 Feb;21(2):212-25 [PMID: 15639400]
  27. Gait Posture. 2011 Feb;33(2):158-64 [PMID: 21247765]
  28. J Biomech Eng. 2016 Jun;138(6):061010 [PMID: 27109706]
  29. Comput Methods Biomech Biomed Engin. 2014;17 Suppl 1:76-7 [PMID: 25074172]
  30. J Biomech. 1999 Feb;32(2):129-34 [PMID: 10052917]
  31. Ann Biomed Eng. 2015 Nov;43(11):2675-85 [PMID: 25917122]
  32. J Biomech. 2005 Feb;38(2):197-208 [PMID: 15598446]
  33. Comput Methods Biomech Biomed Engin. 2009 Aug;12(4):371-84 [PMID: 18949590]
  34. J Biomech. 2012 Oct 11;45(15):2719-23 [PMID: 22964018]
  35. J Appl Biomech. 2014 Jun;30(3):446-60 [PMID: 24347565]
  36. J Biomech. 2010 Jan 19;43(2):268-73 [PMID: 19879581]
  37. PLoS One. 2014 Nov 12;9(11):e112625 [PMID: 25390896]
  38. Med Biol Eng Comput. 2014 Mar;52(3):283-91 [PMID: 23543279]
  39. Gait Posture. 2009 Jan;29(1):119-22 [PMID: 18768320]
  40. J Biomech. 2015 Dec 16;48(16):4198-205 [PMID: 26506255]
  41. J Biomech. 2015 Nov 26;48(15):4166-4172 [PMID: 26555716]
  42. J Biomech. 2010 Oct 19;43(14):2858-62 [PMID: 20701914]
  43. J Biomech. 1992 Jan;25(1):81-90 [PMID: 1733986]

MeSH Term

Adult
Biomechanical Phenomena
Female
Femur
Humans
Joint Diseases
Knee
Knee Joint
Male
Models, Theoretical
Movement
Range of Motion, Articular
Tibia

Word Cloud

Created with Highcharts 10.0.0jointMBO1kinematicskneeelasticstiffnessmatrixusingconstraintsmmstudyobtainedusedmodelsanglesdisplacementsestimatesembeddingsphericalparallelmechanismreferenceanalysisvalues7Kneeusemulti-bodyoptimisationestimatestereophotogrammetricdatacompensatingsofttissueartefactstillopendebatePresentlyembeddedmechanicallinkagesconstituteconsiderablesimplificationfunctionpreventingdetailedunderstandingpresentproposesmodelfemurtibiarepresentedrigidbodiesconnectedelementbehaviourdescribedsingledeformationenergycomputedminimisedwithinImplemented"soft"constraintpenalty-basedmethoddescriptionchallengesstrictness"hard"fourdifferentiecomparedmeasuredbi-planarfluoroscopytwohealthysubjectsascendingstairsBland-Altmansensitivityinvestigatinginfluencevariationstermsestimatedsubstantiateconclusionsdifferencecorrespondingshowedaveragebiasstandarddeviation09±36±23lower1±324±47±36±1comparable0±33±19demonstratedfeasibilitysubstitutingclassicKinematicsEstimationUsingMulti-BodyOptimisationEmbeddingJointStiffnessMatrix:FeasibilityStudy

Similar Articles

Cited By