GEFs: Dual regulation of Rac1 signaling.

Hadir Marei, Angeliki Malliri
Author Information
  1. Hadir Marei: a Cell Signaling Group, Cancer Research UK Manchester Institute , The University of Manchester , Manchester , UK.
  2. Angeliki Malliri: a Cell Signaling Group, Cancer Research UK Manchester Institute , The University of Manchester , Manchester , UK.

Abstract

GEFs play a critical role in regulating Rac1 signaling. They serve as signaling nodes converting upstream signals into downstream Rac1-driven cellular responses. Through associating with membrane-bound Rac1, GEFs facilitate the exchange of GDP for GTP, thereby activating Rac1. As a result, Rac1 undergoes conformational changes that mediate its interaction with downstream effectors, linking Rac1 to a multitude of physiological and pathological processes. Interestingly, there are at least 20 GEFs involved in Rac1 activation, suggesting a more complex role of GEFs in regulating Rac1 signaling apart from promoting the exchange of GDP for GTP. Indeed, accumulating evidence implicates GEFs in directing the specificity of Rac1-driven signaling cascades, although the underlying mechanisms were poorly defined. Recently, through conducting a comparative study, we highlighted the role of 2 Rac-specific GEFs, Tiam1 and P-Rex1, in dictating the biological outcome downstream of Rac1. Importantly, further proteomic analysis uncovered a GEF activity-independent function for both GEFs in modulating the Rac1 interactome, which results in the stimulation of GEF-specific signaling cascades. Here, we provide an overview of our recent findings and discuss the role of GEFs as master regulators of Rac1 signaling with a particular focus on GEF-mediated modulation of cell migration following Rac1 activation.

Keywords

References

  1. Nat Rev Cancer. 2016 Apr;16(4):201-18 [PMID: 27009393]
  2. Nat Commun. 2016 Feb 18;7:10664 [PMID: 26887924]
  3. Nat Cell Biol. 2003 Aug;5(8):711-9 [PMID: 12844144]
  4. Science. 1998 Aug 7;281(5378):832-5 [PMID: 9694656]
  5. J Invest Dermatol. 2009 Aug;129(8):2031-45 [PMID: 19212345]
  6. Cell. 2011 Jun 24;145(7):1012-22 [PMID: 21703446]
  7. Science. 1997 Nov 21;278(5342):1464-6 [PMID: 9367959]
  8. J Biol Chem. 1999 Sep 10;274(37):26044-50 [PMID: 10473551]
  9. J Cell Sci. 2001 Feb;114(Pt 3):549-62 [PMID: 11171324]
  10. Mol Cell. 2010 Dec 22;40(6):877-92 [PMID: 21172654]
  11. Nature. 2002 Dec 12;420(6916):629-35 [PMID: 12478284]
  12. J Biol Chem. 2010 Jun 4;285(23):18060-71 [PMID: 20360004]
  13. J Biol Chem. 2001 Nov 9;276(45):41889-97 [PMID: 11551917]
  14. J Biol Chem. 2003 May 23;278(21):18833-41 [PMID: 12531897]
  15. Mol Cell. 2009 Mar 13;33(5):639-53 [PMID: 19285946]
  16. Mol Cancer Ther. 2013 Oct;12(10):1925-34 [PMID: 24072884]
  17. Nat Rev Mol Cell Biol. 2005 Feb;6(2):167-80 [PMID: 15688002]
  18. J Cell Biol. 2010 Jan 11;188(1):11-9 [PMID: 19951899]
  19. Mol Biol Cell. 2015 Jun 15;26(12):2279-97 [PMID: 25877872]
  20. Trends Cell Biol. 2007 Aug;17(8):383-93 [PMID: 17765544]
  21. Curr Biol. 1999 Jun 17;9(12):640-8 [PMID: 10375527]
  22. J Biol Chem. 2010 May 21;285(21):16231-8 [PMID: 20223827]
  23. J Cell Biol. 2000 Aug 21;150(4):797-806 [PMID: 10953004]
  24. Nat Commun. 2011 Nov 22;2:555 [PMID: 22109529]
  25. Int J Biochem Cell Biol. 2008;40(8):1555-69 [PMID: 18191609]
  26. Anticancer Agents Med Chem. 2014;14(6):840-51 [PMID: 24066799]
  27. J Biol Chem. 1998 Jul 3;273(27):16782-6 [PMID: 9642235]
  28. FASEB J. 2012 Aug;26(8):3260-72 [PMID: 22581781]
  29. Oncogene. 2009 Apr 23;28(16):1853-63 [PMID: 19305425]
  30. Cell Rep. 2015 Jan 6;10 (1):88-102 [PMID: 25543140]
  31. Mol Cancer Res. 2010 May;8(5):629-42 [PMID: 20460404]
  32. Cancer Metastasis Rev. 2009 Jun;28(1-2):65-76 [PMID: 19160018]
  33. J Cell Biol. 2011 Nov 28;195(5):855-71 [PMID: 22105346]
  34. Oncogene. 2011 Mar 3;30(9):1059-71 [PMID: 21042280]
  35. Cell Cycle. 2011 May 15;10(10):1571-81 [PMID: 21478669]
  36. J Cell Sci. 2004 Sep 15;117(Pt 20):4863-71 [PMID: 15340013]
  37. Cell Commun Signal. 2010 Sep 07;8:23 [PMID: 20822528]
  38. J Cell Biol. 1998 Jan 12;140(1):119-29 [PMID: 9425160]
  39. Small GTPases. 2013 Oct-Dec;4(4):199-207 [PMID: 24355937]
  40. Cell. 1996 Feb 9;84(3):359-69 [PMID: 8608589]
  41. Mol Biol Cell. 1998 Jul;9(7):1863-71 [PMID: 9658176]
  42. Cell Cycle. 2016 Aug 2;15(15):1961-74 [PMID: 27152953]
  43. Small GTPases. 2016 Jul 2;7(3):123-38 [PMID: 27104658]
  44. Mamm Genome. 2011 Jun;22(5-6):341-52 [PMID: 21400204]
  45. Biochem Biophys Res Commun. 1999 Apr 2;257(1):111-6 [PMID: 10092519]
  46. J Invest Dermatol. 2011 Jul;131(7):1450-9 [PMID: 21430700]
  47. Pathol Int. 2002 Apr;52(4):255-64 [PMID: 12031080]
  48. Biochim Biophys Acta. 2009 Dec;1796(2):293-308 [PMID: 19683560]
  49. J Biol Chem. 2004 Jul 16;279(29):30092-8 [PMID: 15138270]
  50. Mol Cell Biol. 2002 Jun;22(12):4073-85 [PMID: 12024021]
  51. Mol Cell Biol. 2005 Jun;25(11):4602-14 [PMID: 15899863]
  52. Mol Cell. 1998 Jan;1(2):183-92 [PMID: 9659915]
  53. J Pathol. 2007 Apr;211(5):572-81 [PMID: 17326236]

Grants

  1. 20410/Cancer Research UK
  2. MR/L007495/1/Medical Research Council
  3. C5759/A12328/Cancer Research UK

MeSH Term

Animals
Cell Movement
Guanine Nucleotide Exchange Factors
Humans
Signal Transduction
rac1 GTP-Binding Protein

Chemicals

Guanine Nucleotide Exchange Factors
rac1 GTP-Binding Protein

Word Cloud

Created with Highcharts 10.0.0Rac1GEFssignalingrolecelldownstreamexchangeregulatingRac1-drivenGDPGTPactivationcascadesTiam1migrationplaycriticalservenodesconvertingupstreamsignalscellularresponsesassociatingmembrane-boundfacilitatetherebyactivatingresultundergoesconformationalchangesmediateinteractioneffectorslinkingmultitudephysiologicalpathologicalprocessesInterestinglyleast20involvedsuggestingcomplexapartpromotingIndeedaccumulatingevidenceimplicatesdirectingspecificityalthoughunderlyingmechanismspoorlydefinedRecentlyconductingcomparativestudyhighlighted2Rac-specificP-Rex1dictatingbiologicaloutcomeImportantlyproteomicanalysisuncoveredGEFactivity-independentfunctionmodulatinginteractomeresultsstimulationGEF-specificprovideoverviewrecentfindingsdiscussmasterregulatorsparticularfocusGEF-mediatedmodulationfollowingGEFs:DualregulationIQGAP1MLCNMMIIAPRex-1FLIIcontractioninvasionguaninenucleotidefactors

Similar Articles

Cited By