Mitochondrial Dysfunction in the Liver and Antiphospholipid Antibody Production Precede Disease Onset and Respond to Rapamycin in Lupus-Prone Mice.

Zachary Oaks, Thomas Winans, Tiffany Caza, David Fernandez, Yuxin Liu, Steve K Landas, Katalin Banki, Andras Perl
Author Information
  1. Zachary Oaks: State University of New York, Upstate Medical University, Syracuse.
  2. Thomas Winans: State University of New York, Upstate Medical University, Syracuse.
  3. Tiffany Caza: State University of New York, Upstate Medical University, Syracuse.
  4. David Fernandez: State University of New York, Upstate Medical University, Syracuse.
  5. Yuxin Liu: State University of New York, Upstate Medical University, Syracuse.
  6. Steve K Landas: State University of New York, Upstate Medical University, Syracuse.
  7. Katalin Banki: State University of New York, Upstate Medical University, Syracuse.
  8. Andras Perl: State University of New York, Upstate Medical University, Syracuse. perla@upstate.edu.

Abstract

OBJECTIVE: Antiphospholipid antibodies (aPL) constitute a diagnostic criterion of systemic lupus erythematosus (SLE), and aPL have been functionally linked to liver disease in patients with SLE. Since the mechanistic target of rapamycin (mTOR) is a regulator of oxidative stress, a pathophysiologic process that contributes to the development of aPL, this study was undertaken in a mouse model of SLE to examine the involvement of liver mitochondria in lupus pathogenesis.
METHODS: Mitochondria were isolated from lupus-prone MRL/lpr, C57BL/6.lpr, and MRL mice, age-matched autoimmunity-resistant C57BL/6 mice as negative controls, and transaldolase-deficient mice, a strain that exhibits oxidative stress in the liver. Electron transport chain (ETC) activity was assessed using measurements of oxygen consumption. ETC proteins, which are regulators of mitochondrial homeostasis, and the mTOR complexes mTORC1 and mTORC2 were examined by Western blotting. Anticardiolipin (aCL) and anti-β -glycoprotein I (anti-β GPI) autoantibodies were measured by enzyme-linked immunosorbent assay in mice treated with rapamycin or mice treated with a solvent control.
RESULTS: Mitochondrial oxygen consumption was increased in the livers of 4-week-old, disease-free MRL/lpr mice relative to age-matched controls. Levels of the mitophagy initiator dynamin-related protein 1 (Drp1) were depleted while the activity of mTORC1 was increased in MRL/lpr mice. In turn, mTORC2 activity was decreased in MRL and MRL/lpr mice. In addition, levels of aCL and anti-β GPI were elevated preceding the development of nephritis in 4-week-old MRL, C57BL/6.lpr, and MRL/lpr mice. Transaldolase-deficient mice showed increased oxygen consumption, depletion of Drp1, activation of mTORC1, and elevated expression of NADH:ubiquinone oxidoreductase core subunit S3 (NDUFS3), a pro-oxidant subunit of ETC complex I, as well as increased production of aCL and anti-β GPI autoantibodies. Treatment with rapamycin selectively blocked mTORC1 activation, NDUFS3 expression, and aPL production both in transaldolase-deficient mice and in lupus-prone mice.
CONCLUSION: In lupus-prone mice, mTORC1-dependent mitochondrial dysfunction contributes to the generation of aPL, suggesting that such mechanisms may represent a treatment target in patients with SLE.

References

  1. N Engl J Med. 2014 Jul 24;371(4):303-12 [PMID: 25054716]
  2. Nature. 2009 Jul 16;460(7253):392-5 [PMID: 19587680]
  3. Methods Mol Med. 2004;102:227-72 [PMID: 15286389]
  4. Arthritis Rheum. 2004 Apr;50(4):1226-32 [PMID: 15077305]
  5. Lupus. 2000;9(4):299-300 [PMID: 10866101]
  6. Arthritis Rheum. 2012 Aug;64(8):2677-86 [PMID: 22553077]
  7. Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4319-24 [PMID: 11930000]
  8. Arthritis Rheum. 2011 Sep;63(9):2774-82 [PMID: 21618459]
  9. J Biol Chem. 2012 Aug 3;287(32):27255-64 [PMID: 22689576]
  10. N Engl J Med. 2003 Sep 18;349(12):1177-9 [PMID: 13679533]
  11. Methods Mol Biol. 2012;900:61-89 [PMID: 22933065]
  12. Biochim Biophys Acta. 2014 Apr 4;1841(4):595-609 [PMID: 24316057]
  13. Nat Rev Rheumatol. 2016 Mar;12(3):169-82 [PMID: 26698023]
  14. Nat Commun. 2014 May 12;5:3837 [PMID: 24815183]
  15. J Immunol. 2013 Sep 1;191(5):2236-46 [PMID: 23913957]
  16. Arthritis Rheum. 2006 Sep;54(9):2983-8 [PMID: 16947529]
  17. N Engl J Med. 2011 Dec 1;365(22):2110-21 [PMID: 22129255]
  18. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4120-4 [PMID: 2349221]
  19. J Immunol. 2014 May 1;192(9):4134-44 [PMID: 24683191]
  20. J Biol Chem. 2005 Nov 25;280(47):39505-9 [PMID: 16183647]
  21. J Thromb Haemost. 2006 Feb;4(2):295-306 [PMID: 16420554]
  22. Arthritis Rheumatol. 2014 Jun;66(6):1574-82 [PMID: 24577881]
  23. J Immunol. 2009 Feb 15;182(4):2063-73 [PMID: 19201859]
  24. Nat Rev Rheumatol. 2013 Nov;9(11):674-86 [PMID: 24100461]
  25. J Biol Chem. 2007 Jul 27;282(30):21583-7 [PMID: 17553808]
  26. Arthritis Rheum. 2008 Feb;58(2):532-40 [PMID: 18240231]
  27. J Biol Chem. 2006 Nov 10;281(45):34574-91 [PMID: 16935861]
  28. Medicine (Baltimore). 1998 May;77(3):195-207 [PMID: 9653431]
  29. Biochem J. 2011 Apr 15;435(2):297-312 [PMID: 21726199]
  30. Arthritis Rheum. 1997 Sep;40(9):1725 [PMID: 9324032]
  31. Clin Immunol. 2015 Oct;160(2):319-27 [PMID: 26160213]
  32. Mol Cell. 2015 Feb 5;57(3):537-51 [PMID: 25658205]
  33. Trends Mol Med. 2011 Jul;17(7):395-403 [PMID: 21376665]
  34. Arthritis Rheum. 1982 Nov;25(11):1271-7 [PMID: 7138600]
  35. J Cell Sci. 2007 Mar 1;120(Pt 5):838-48 [PMID: 17298981]
  36. Apoptosis. 2008 Jan;13(1):41-51 [PMID: 17955374]
  37. Arthritis Rheum. 2002 Jan;46(1):175-90 [PMID: 11817589]
  38. Mol Cell. 2015 Feb 5;57(3):521-36 [PMID: 25658204]
  39. J Biol Chem. 2003 Jan 17;278(3):1975-85 [PMID: 12393886]
  40. J Clin Invest. 2009 Jun;119(6):1546-57 [PMID: 19436114]
  41. PLoS One. 2014 Jan 03;9(1):e84392 [PMID: 24404161]
  42. Arthritis Rheum. 2005 May;52(5):1481-90 [PMID: 15880596]
  43. J Immunol. 1996 Apr 1;156(7):2631-41 [PMID: 8786329]
  44. Arthritis Rheum. 2002 Oct;46(10):2686-94 [PMID: 12384928]
  45. Ann Rheum Dis. 2014 Oct;73(10):1888-97 [PMID: 23897774]
  46. J Gastrointestin Liver Dis. 2015 Mar;24(1):25-34, 3 p following 34 [PMID: 25822431]
  47. Metabolomics. 2015;11(5):1157-1174 [PMID: 26366134]
  48. Orv Hetil. 2005 Jan 30;146(5):203-7 [PMID: 15773587]
  49. Liver Cancer. 2012 Nov;1(3-4):247-56 [PMID: 24159589]

Grants

  1. R34 AR068052/NIAMS NIH HHS
  2. R01 AI122176/NIAID NIH HHS
  3. U01 AR076092/NIAMS NIH HHS
  4. R01 AI048079/NIAID NIH HHS
  5. R01 AI072648/NIAID NIH HHS

MeSH Term

Animals
Antibodies, Anticardiolipin
Antibodies, Antiphospholipid
Antibody Formation
Blotting, Western
Disease Models, Animal
Dynamins
Electron Transport Chain Complex Proteins
Enzyme-Linked Immunosorbent Assay
Female
Immunosuppressive Agents
Lupus Erythematosus, Systemic
Mechanistic Target of Rapamycin Complex 1
Mechanistic Target of Rapamycin Complex 2
Mice
Mice, Inbred C57BL
Mice, Inbred MRL lpr
Mice, Knockout
Mitochondria, Liver
Multiprotein Complexes
Oxidative Stress
Oxygen Consumption
Sirolimus
TOR Serine-Threonine Kinases
Transaldolase
beta 2-Glycoprotein I

Chemicals

Antibodies, Anticardiolipin
Antibodies, Antiphospholipid
Electron Transport Chain Complex Proteins
Immunosuppressive Agents
Multiprotein Complexes
beta 2-Glycoprotein I
Transaldolase
Mechanistic Target of Rapamycin Complex 1
Mechanistic Target of Rapamycin Complex 2
TOR Serine-Threonine Kinases
Dnm1l protein, mouse
Dynamins
Sirolimus

Word Cloud

Created with Highcharts 10.0.0miceaPLMRL/lprSLEmTORC1anti-βincreasedliverrapamycinlupus-proneC57BL/6MRLETCactivityoxygenconsumptionaCLGPIAntiphospholipidlupuspatientstargetmTORoxidativestresscontributesdevelopmentlprage-matchedcontrolstransaldolase-deficientmitochondrialmTORC2autoantibodiestreatedMitochondrial4-week-oldDrp1elevatedactivationexpressionsubunitNDUFS3productionOBJECTIVE:antibodiesconstitutediagnosticcriterionsystemicerythematosusfunctionallylinkeddiseaseSincemechanisticregulatorpathophysiologicprocessstudyundertakenmousemodelexamineinvolvementmitochondriapathogenesisMETHODS:Mitochondriaisolatedautoimmunity-resistantnegativestrainexhibitsElectrontransportchainassessedusingmeasurementsproteinsregulatorshomeostasiscomplexesexaminedWesternblottingAnticardiolipin-glycoproteinmeasuredenzyme-linkedimmunosorbentassaysolventcontrolRESULTS:liversdisease-freerelativeLevelsmitophagyinitiatordynamin-relatedprotein1depletedturndecreasedadditionlevelsprecedingnephritisTransaldolase-deficientshoweddepletionNADH:ubiquinoneoxidoreductasecoreS3pro-oxidantcomplexwellTreatmentselectivelyblockedCONCLUSION:mTORC1-dependentdysfunctiongenerationsuggestingmechanismsmayrepresenttreatmentDysfunctionLiverAntibodyProductionPrecedeDiseaseOnsetRespondRapamycinLupus-ProneMice

Similar Articles

Cited By