A novel skew analysis reveals substitution asymmetries linked to genetic code GC-biases and PolIII a-subunit isoforms.

Konstantinos Apostolou-Karampelis, Christoforos Nikolaou, Yannis Almirantis
Author Information
  1. Konstantinos Apostolou-Karampelis: Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece apostolou@bio.demokritos.gr yalmir@bio.demokritos.gr.
  2. Christoforos Nikolaou: Computational Genomics Group, Department of Biology, University of Crete, 71409 Heraklion, Greece.
  3. Yannis Almirantis: Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece apostolou@bio.demokritos.gr yalmir@bio.demokritos.gr.

Abstract

Strand biases reflect deviations from a null expectation of DNA evolution that assumes strand-symmetric substitution rates. Here, we present strong evidence that nearest-neighbour preferences are a strand-biased feature of bacterial genomes, indicating neighbour-dependent substitution asymmetries. To detect such asymmetries we introduce an alignment free index (relative abundance skews). The profiles of relative abundance skews along coding sequences can trace the phylogenetic relations of bacteria, suggesting that the patterns of neighbour-dependent substitution strand-biases are not common among different lineages, but are rather species-specific. Analysis of neighbour-dependent and codon-site skews sheds light on the origins of substitution asymmetries. Via a simple model we argue that the structure of the genetic code imposes position-dependent substitution strand-biases along coding sequences, as a response to GC mutation pressure. Thus, the organization of the genetic code per se can lead to an uneven distribution of nucleotides among different codon sites, even when requirements for specific codons and amino-acids are not accounted for. Moreover, our results suggest that strand-biases in replication fidelity of PolIII α-subunit induce substitution asymmetries, both neighbour-dependent and independent, on a genome scale. The role of DNA repair systems, such as transcription-coupled repair, is also considered.

Keywords

References

  1. BMC Genomics. 2007 Oct 12;8:369 [PMID: 17935620]
  2. Trends Microbiol. 2002 Sep;10(9):393-5 [PMID: 12217498]
  3. Mol Biol Evol. 2001 Sep;18(9):1789-99 [PMID: 11504858]
  4. Amino Acids. 2008 May;34(4):661-8 [PMID: 18180868]
  5. J Mol Evol. 2000 Mar;50(3):249-57 [PMID: 10754068]
  6. Mol Biol Evol. 2004 Jun;21(6):1014-23 [PMID: 15014158]
  7. J Mol Evol. 1984;20(2):111-9 [PMID: 6433029]
  8. Res Microbiol. 2007 May;158(4):363-70 [PMID: 17449227]
  9. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):11036-40 [PMID: 1438310]
  10. J Biol Chem. 1961 Mar;236:864-75 [PMID: 13790780]
  11. Mol Gen Genet. 1977 Nov 14;156(2):133-40 [PMID: 340899]
  12. Cell Mol Life Sci. 2013 Dec;70(23):4495-509 [PMID: 23807206]
  13. Nucleic Acids Res. 2014 Jan;42(Database issue):D231-9 [PMID: 24297252]
  14. Gene. 2006 Oct 15;381:34-41 [PMID: 16893615]
  15. Curr Opin Microbiol. 1998 Oct;1(5):598-610 [PMID: 10066522]
  16. Genetics. 1998 May;149(1):37-44 [PMID: 9584084]
  17. Nucleic Acids Res. 2012 Sep 1;40(17):8210-8 [PMID: 22735706]
  18. Bioinformatics. 2006 Jan 1;22(1):117-9 [PMID: 16234319]
  19. Genetics. 1991 Nov;129(3):897-907 [PMID: 1752426]
  20. Gene. 1999 Sep 30;238(1):65-77 [PMID: 10570985]
  21. PLoS One. 2010 Oct 27;5(10):e13431 [PMID: 21048949]
  22. J Mol Biol. 1981 Sep 25;151(3):389-409 [PMID: 6175758]
  23. J Mol Evol. 2001 Oct-Nov;53(4-5):364-76 [PMID: 11675596]
  24. J Biol Chem. 1981 Aug 25;256(16):8458-62 [PMID: 6943145]
  25. Nucleic Acids Res. 1998 May 15;26(10):2286-90 [PMID: 9580676]
  26. BMC Genomics. 2014 Jun 04;15:430 [PMID: 24899249]
  27. Genomics Proteomics Bioinformatics. 2006 Nov;4(4):203-11 [PMID: 17531796]
  28. Biochemistry. 1996 Aug 6;35(31):10172-81 [PMID: 8756482]
  29. Nucleic Acids Res. 2013 Jan;41(Database issue):D90-3 [PMID: 23093601]
  30. Bioinformatics. 2002 Aug;18(8):1021-33 [PMID: 12176825]
  31. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9184-9 [PMID: 10430917]
  32. Mol Microbiol. 1999 Apr;32(1):11-6 [PMID: 10216855]
  33. Gene. 1999 Sep 30;238(1):3-14 [PMID: 10570978]
  34. Trends Genet. 1995 Jul;11(7):283-90 [PMID: 7482779]
  35. Biosystems. 2013 Mar;111(3):181-9 [PMID: 23438636]
  36. PLoS Genet. 2011 Sep;7(9):e1002283 [PMID: 21935355]
  37. Genome Biol. 2002 Sep 26;3(10):RESEARCH0058 [PMID: 12372146]
  38. Annu Rev Genet. 2008;42:211-33 [PMID: 18605898]
  39. Gene. 1998 Sep 14;217(1-2):57-67 [PMID: 9795135]
  40. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3720-5 [PMID: 9520433]
  41. Nucleic Acids Res. 2005 May 10;33(8):2603-14 [PMID: 15886391]
  42. Biol Direct. 2010 Nov 08;5:63 [PMID: 21059261]
  43. Nucleic Acids Res. 1993 Jun 25;21(12):2797-800 [PMID: 8332488]
  44. Cold Spring Harb Symp Quant Biol. 1961;26:35-43 [PMID: 13918160]
  45. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10227-32 [PMID: 9294192]
  46. Genome Res. 2006 Dec;16(12):1537-47 [PMID: 17068325]
  47. Nucleic Acids Res. 2012 Jan;40(Database issue):D136-43 [PMID: 22139910]
  48. Trends Genet. 1997 Jun;13(6):240-5 [PMID: 9196330]
  49. Mol Biol Evol. 2006 May;23(5):1031-9 [PMID: 16476690]
  50. Nucleic Acids Res. 1982 Nov 25;10(22):7055-74 [PMID: 6760125]
  51. Cell. 2003 Apr 18;113(2):183-93 [PMID: 12705867]
  52. Genome Biol. 2001;2(4):RESEARCH0010 [PMID: 11305938]
  53. Curr Issues Mol Biol. 2003 Apr;5(2):37-42 [PMID: 12793527]
  54. J Mol Evol. 1995 Mar;40(3):318-25 [PMID: 7723058]
  55. J Theor Biol. 1999 Mar 7;197(1):63-76 [PMID: 10036208]
  56. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11574-8 [PMID: 1763073]
  57. Mol Biol Evol. 2007 Oct;24(10):2169-79 [PMID: 17646257]
  58. Science. 2001 Nov 23;294(5547):1716-9 [PMID: 11721055]
  59. Mol Biol Evol. 1996 May;13(5):660-5 [PMID: 8676740]
  60. Proc Natl Acad Sci U S A. 1987 Jan;84(1):166-9 [PMID: 3467347]
  61. Biochem Biophys Res Commun. 2006 Feb 3;340(1):90-4 [PMID: 16364245]
  62. Nucleic Acids Res. 2005 Nov 30;33(21):6816-22 [PMID: 16321966]
  63. Bioinformatics. 2005 May 15;21(10):2322-8 [PMID: 15769841]
  64. C R Acad Sci III. 2001 Mar;324(3):201-8 [PMID: 11291306]
  65. J Theor Biol. 1999 Mar 7;197(1):51-61 [PMID: 10036207]
  66. J Mol Evol. 1995 Mar;40(3):326-30 [PMID: 7723059]
  67. Environ Microbiol. 2006 Feb;8(2):353-61 [PMID: 16423021]
  68. Science. 1996 Apr 5;272(5258):107-9 [PMID: 8600517]
  69. Genomics Proteomics Bioinformatics. 2007 Feb;5(1):1-6 [PMID: 17572358]
  70. Mol Biol Evol. 1999 Jun;16(6):719-23 [PMID: 10368950]
  71. Mol Biosyst. 2014 Jul 29;10(9):2441-7 [PMID: 24994036]

MeSH Term

Algorithms
Bacteria
Bacterial Proteins
Base Pairing
DNA Polymerase III
GC Rich Sequence
Genetic Code
Genome, Bacterial
Models, Genetic
Mutation
Mutation Rate

Chemicals

Bacterial Proteins
DNA Polymerase III

Word Cloud

Created with Highcharts 10.0.0substitutionasymmetriesneighbour-dependentstrand-biasesrelativeskewsgeneticcodePolIIIDNAabundancealongcodingsequencescanamongdifferentGCpressurerepaira-subunitisoformsStrandbiasesreflectdeviationsnullexpectationevolutionassumesstrand-symmetricratespresentstrongevidencenearest-neighbourpreferencesstrand-biasedfeaturebacterialgenomesindicatingdetectintroducealignmentfreeindexprofilestracephylogeneticrelationsbacteriasuggestingpatternscommonlineagesratherspecies-specificAnalysiscodon-siteshedslightoriginsViasimplemodelarguestructureimposesposition-dependentresponsemutationThusorganizationperseleadunevendistributionnucleotidescodonsitesevenrequirementsspecificcodonsamino-acidsaccountedMoreoverresultssuggestreplicationfidelityα-subunitinduceindependentgenomescalerolesystemstranscription-coupledalsoconsiderednovelskewanalysisrevealslinkedGC-biasesChargaff’ssecondparityrulePR2mutationaldinucleotideabundancesoddsratios

Similar Articles

Cited By