Biologically sensitive field-effect transistors: from ISFETs to NanoFETs.

Vivek Pachauri, Sven Ingebrandt
Author Information
  1. Vivek Pachauri: Biomedical Signalling Group, Department of Computer Sciences and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibruecken, Germany.
  2. Sven Ingebrandt: Biomedical Signalling Group, Department of Computer Sciences and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibruecken, Germany sven.ingebrandt@hs-kl.de.

Abstract

Biologically sensitive field-effect transistors (BioFETs) are one of the most abundant classes of electronic sensors for biomolecular detection. Most of the time these sensors are realized as classical ion-sensitive field-effect transistors (ISFETs) having non-metallized gate dielectrics facing an electrolyte solution. In ISFETs, a semiconductor material is used as the active transducer element covered by a gate dielectric layer which is electronically sensitive to the (bio-)chemical changes that occur on its surface. This review will provide a brief overview of the history of ISFET biosensors with general operation concepts and sensing mechanisms. We also discuss silicon nanowire-based ISFETs (SiNW FETs) as the modern nanoscale version of classical ISFETs, as well as strategies to functionalize them with biologically sensitive layers. We include in our discussion other ISFET types based on nanomaterials such as carbon nanotubes, metal oxides and so on. The latest examples of highly sensitive label-free detection of deoxyribonucleic acid (DNA) molecules using SiNW FETs and single-cell recordings for drug screening and other applications of ISFETs will be highlighted. Finally, we suggest new device platforms and newly developed, miniaturized read-out tools with multichannel potentiometric and impedimetric measurement capabilities for future biomedical applications.

Keywords

References

  1. Biosens Bioelectron. 2013 Feb 15;40(1):50-6 [PMID: 22795530]
  2. Biosens Bioelectron. 2004 Jul 15;19(12):1723-31 [PMID: 15142607]
  3. Science. 2001 Aug 17;293(5533):1289-92 [PMID: 11509722]
  4. Lab Chip. 2009 Sep 21;9(18):2644-51 [PMID: 19704979]
  5. Biosens Bioelectron. 2008 Jun 15;23(11):1701-7 [PMID: 18356037]
  6. Biosens Bioelectron. 2015 May 15;67:490-6 [PMID: 25241122]
  7. Nanomedicine (Lond). 2006 Jun;1(1):51-65 [PMID: 17716209]
  8. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Aug;60(2 Pt B):2171-6 [PMID: 11970010]
  9. Anal Chim Acta. 2013 May 13;777:1-16 [PMID: 23622959]
  10. Biosens Bioelectron. 2009 Jan 1;24(5):1201-8 [PMID: 18692383]
  11. IEEE Trans Biomed Eng. 1976 Mar;23(2):136-44 [PMID: 1248839]
  12. Nano Lett. 2007 Nov;7(11):3405-9 [PMID: 17914853]
  13. Anal Chem. 2007 May 1;79(9):3291-7 [PMID: 17407259]
  14. Nat Nanotechnol. 2015 Sep;10(9):734-5 [PMID: 26329108]
  15. Biosens Bioelectron. 2007 Jun 15;22(12):2834-40 [PMID: 17187976]
  16. Small. 2005 Feb;1(2):206-10 [PMID: 17193431]
  17. Biosens Bioelectron. 2015 May 15;67:170-6 [PMID: 25155061]
  18. Nat Nanotechnol. 2015 Sep;10(9):791-5 [PMID: 26237346]
  19. Nature. 2007 Feb 1;445(7127):519-22 [PMID: 17268465]
  20. Biotechnol Adv. 2011 Mar-Apr;29(2):169-88 [PMID: 21034805]
  21. Biosens Bioelectron. 1997;12(8):819-26 [PMID: 9421889]
  22. Lab Chip. 2015 Feb 7;15(3):668-79 [PMID: 25412224]
  23. Science. 1991 May 31;252(5010):1290-3 [PMID: 1925540]
  24. Biosens Bioelectron. 2004 Sep 15;20(2):358-66 [PMID: 15308242]

MeSH Term

Biosensing Techniques
Cells, Immobilized
Immobilized Nucleic Acids
Nanotechnology
Transistors, Electronic

Chemicals

Immobilized Nucleic Acids

Word Cloud

Created with Highcharts 10.0.0ISFETssensitivefield-effecttransistorssensorsBiologicallydetectionclassicalgatewillISFETbiosensorssiliconSiNWFETsapplicationsBioFETsoneabundantclasseselectronicbiomoleculartimerealizedion-sensitivenon-metallizeddielectricsfacingelectrolytesolutionsemiconductormaterialusedactivetransducerelementcovereddielectriclayerelectronicallybio-chemicalchangesoccursurfacereviewprovidebriefoverviewhistorygeneraloperationconceptssensingmechanismsalsodiscussnanowire-basedmodernnanoscaleversionwellstrategiesfunctionalizebiologicallylayersincludediscussiontypes basednanomaterialscarbonnanotubesmetaloxideslatestexampleshighlylabel-freedeoxyribonucleicacidDNAmoleculesusingsingle-cellrecordingsdrugscreeninghighlightedFinallysuggestnewdeviceplatformsnewlydevelopedminiaturizedread-outtoolsmultichannelpotentiometricimpedimetricmeasurementcapabilitiesfuturebiomedicaltransistors:NanoFETsfield-effect-basednanowire

Similar Articles

Cited By