Analogs of the ATP-Sensitive Potassium (KATP) Channel Opener Cromakalim with in Vivo Ocular Hypotensive Activity.

Uttio Roy Chowdhury, Kimberly B Viker, Kristen L Stoltz, Bradley H Holman, Michael P Fautsch, Peter I Dosa
Author Information
  1. Uttio Roy Chowdhury: Department of Ophthalmology, Mayo Clinic , 200 1st St SW, Rochester, Minnesota 55905, United States.
  2. Kimberly B Viker: Department of Ophthalmology, Mayo Clinic , 200 1st St SW, Rochester, Minnesota 55905, United States.
  3. Kristen L Stoltz: Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota , 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States.
  4. Bradley H Holman: Department of Ophthalmology, Mayo Clinic , 200 1st St SW, Rochester, Minnesota 55905, United States.
  5. Michael P Fautsch: Department of Ophthalmology, Mayo Clinic , 200 1st St SW, Rochester, Minnesota 55905, United States.
  6. Peter I Dosa: Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota , 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States.

Abstract

ATP-sensitive potassium (KATP) channel openers have emerged as potential therapeutics for the treatment of glaucoma, lowering intraocular pressure (IOP) in animal models and cultured human anterior segments. We have prepared water-soluble phosphate and dipeptide derivatives of the KATP channel opener cromakalim and evaluated their IOP lowering capabilities in vivo. In general, the phosphate derivatives proved to be more chemically robust and efficacious at lowering IOP with once daily dosing in a normotensive mouse model. Two of these phosphate derivatives were further evaluated in a normotensive rabbit model, with a significant difference in activity observed. No toxic effects on cell structure or alterations in morphology of the aqueous humor outflow pathway were observed after treatment with the most efficacious compound, (3S,4R)-2, suggesting that it is a strong candidate for development as an ocular hypotensive agent.

References

  1. Am J Ophthalmol. 1999 Apr;127(4):407-12 [PMID: 10218693]
  2. Prog Retin Eye Res. 2005 Sep;24(5):612-37 [PMID: 15919228]
  3. Ther Clin Risk Manag. 2008 Feb;4(1):269-86 [PMID: 18728716]
  4. Am J Ophthalmol. 1998 Oct;126(4):487-97 [PMID: 9780093]
  5. Curr Eye Res. 1997 Mar;16(3):214-21 [PMID: 9088737]
  6. ACS Med Chem Lett. 2014 Nov 24;6(1):84-8 [PMID: 25589936]
  7. Bioorg Med Chem Lett. 2009 Aug 1;19(15):4046-9 [PMID: 19560920]
  8. Invest Ophthalmol Vis Sci. 2013 Jul 22;54(7):4892-9 [PMID: 23778875]
  9. Invest Ophthalmol Vis Sci. 2015 May;56(5):2993-3003 [PMID: 26024085]
  10. Invest Ophthalmol Vis Sci. 2011 Aug 16;52(9):6435-42 [PMID: 21743021]
  11. J Med Chem. 2013 Jul 11;56(13):5464-72 [PMID: 23738526]
  12. ChemMedChem. 2013 Jun;8(6):1002-11 [PMID: 23640741]
  13. Physiol Rev. 2010 Jul;90(3):799-829 [PMID: 20664073]
  14. PLoS One. 2015 Nov 04;10(11):e0141783 [PMID: 26535899]
  15. Br J Ophthalmol. 2006 Mar;90(3):262-7 [PMID: 16488940]
  16. Arch Ophthalmol. 2002 Oct;120(10):1268-79 [PMID: 12365904]
  17. Bull Math Biol. 2006 Jan;68(1):53-71 [PMID: 16794921]
  18. J Pharm Pharmacol. 2005 Sep;57(9):1153-7 [PMID: 16105235]
  19. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1977 Nov 25;204(3):209-14 [PMID: 304321]
  20. N Engl J Med. 2009 Mar 12;360(11):1113-24 [PMID: 19279343]
  21. Pharmacol Rev. 2011 Sep;63(3):750-71 [PMID: 21737530]
  22. News Physiol Sci. 2003 Oct;18:205-9 [PMID: 14500801]
  23. Ophthalmology. 2014 Nov;121(11):2081-90 [PMID: 24974815]
  24. Bone Marrow Transplant. 2005 Oct;36(7):601-3 [PMID: 16044141]
  25. J Med Chem. 1990 Nov;33(11):3028-34 [PMID: 2231602]
  26. Bioorg Med Chem. 2015 Sep 1;23(17):5360-8 [PMID: 26260340]
  27. Nat Rev Drug Discov. 2012 Jun 15;11(7):541-59 [PMID: 22699774]
  28. Clin Exp Optom. 2002 Nov;85(6):335-49 [PMID: 12452784]
  29. Invest Ophthalmol Vis Sci. 2009 Aug;50(8):3648-54 [PMID: 19264894]
  30. FASEB J. 2014 Mar;28(3):1317-30 [PMID: 24327606]
  31. Nature. 1994 Apr 7;368(6471):563-6 [PMID: 8139693]
  32. Curr Opin Ophthalmol. 2012 Mar;23(2):135-43 [PMID: 22262082]
  33. Arch Ophthalmol. 2002 Jun;120(6):701-13; discussion 829-30 [PMID: 12049574]
  34. Int J Biochem Cell Biol. 2016 Jan;70:23-8 [PMID: 26556311]
  35. Mol Cell Biochem. 2004 Mar;258(1-2):65-71 [PMID: 15030171]
  36. Clin Ther. 1990 Jan-Feb;12(1):2-11 [PMID: 2328525]
  37. J Med Chem. 1986 Nov;29(11):2194-201 [PMID: 3783581]
  38. J Ocul Pharmacol Ther. 2014 Mar-Apr;30(2-3):102-9 [PMID: 24359106]
  39. Ophthalmic Res. 2013;50(4):197-208 [PMID: 24030362]
  40. Hum Mutat. 2006 Mar;27(3):220-31 [PMID: 16416420]
  41. J Ocul Pharmacol Ther. 2009 Jun;25(3):187-94 [PMID: 19456252]
  42. J Med Chem. 2011 Jun 23;54(12):4018-33 [PMID: 21528910]
  43. J Med Chem. 2009 May 14;52(9):2964-70 [PMID: 19348416]
  44. Curr Eye Res. 2003 Mar-Apr;26(3-4):151-63 [PMID: 12815543]
  45. J Med Chem. 2016 Feb 11;59(3):788-809 [PMID: 26356532]
  46. Nat Rev Drug Discov. 2008 Mar;7(3):255-70 [PMID: 18219308]
  47. Eye (Lond). 1989;3 ( Pt 4):463-7 [PMID: 2606222]

Grants

  1. R01 EY021727/NEI NIH HHS
  2. UL1 TR000114/NCATS NIH HHS

MeSH Term

Animals
Antihypertensive Agents
Cromakalim
Dipeptides
Eye
Humans
Intraocular Pressure
KATP Channels
Mice, Inbred C57BL
Phosphates
Rabbits

Chemicals

Antihypertensive Agents
Dipeptides
KATP Channels
Phosphates
Cromakalim

Word Cloud

Created with Highcharts 10.0.0KATPloweringIOPphosphatederivativeschanneltreatmentevaluatedefficaciousnormotensivemodelobservedATP-sensitivepotassiumopenersemergedpotentialtherapeuticsglaucomaintraocularpressureanimalmodelsculturedhumananteriorsegmentspreparedwater-solubledipeptideopenercromakalimcapabilitiesvivogeneralprovedchemicallyrobustdailydosingmouseTworabbitsignificantdifferenceactivitytoxiceffectscellstructurealterationsmorphologyaqueoushumoroutflowpathwaycompound3S4R-2suggestingstrongcandidatedevelopmentocularhypotensiveagentAnalogsATP-SensitivePotassiumChannelOpenerCromakalimVivoOcularHypotensiveActivity

Similar Articles

Cited By