Neural networks within multi-core optic fibers.

Eyal Cohen, Dror Malka, Amir Shemer, Asaf Shahmoon, Zeev Zalevsky, Michael London
Author Information
  1. Eyal Cohen: Life Science Institute, Hebrew University, Jerusalem, Israel.
  2. Dror Malka: Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel.
  3. Amir Shemer: Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel.
  4. Asaf Shahmoon: Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel.
  5. Zeev Zalevsky: Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel.
  6. Michael London: Life Science Institute, Hebrew University, Jerusalem, Israel.

Abstract

Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks.

References

  1. Opt Express. 2014 May 5;22(9):10815-24 [PMID: 24921781]
  2. Phys Rev Lett. 1986 Dec 1;57(22):2861-2864 [PMID: 10033885]
  3. Opt Express. 2012 Jun 18;20(13):13996-4008 [PMID: 22714465]
  4. Opt Lett. 2005 Jul 1;30(13):1629-31 [PMID: 16075519]
  5. Front Neurosci. 2013 Feb 18;7:11 [PMID: 23423583]
  6. Science. 2003 Jan 17;299(5605):358-62 [PMID: 12532007]
  7. Opt Lett. 1985 Feb 1;10(2):98-100 [PMID: 19724358]
  8. Nature. 1988 Feb 25;331(6158):657-9 [PMID: 3344040]
  9. Science. 2004 Apr 2;304(5667):78-80 [PMID: 15064413]
  10. Neuron. 2009 Aug 27;63(4):544-57 [PMID: 19709635]
  11. Opt Lett. 1990 Aug 1;15(15):842-4 [PMID: 19768096]
  12. IEEE Trans Neural Netw. 2000;11(6):1450-7 [PMID: 18249868]
  13. Opt Lett. 1996 Oct 1;21(19):1544-6 [PMID: 19881719]
  14. Appl Opt. 1980 Apr 1;19(7):1154-64 [PMID: 20221001]
  15. Neuron. 2012 Nov 21;76(4):838-46 [PMID: 23177967]
  16. Phys Rev A Gen Phys. 1985 Aug;32(2):1007-1018 [PMID: 9896156]
  17. IEEE Trans Neural Netw. 1997;8(1):98-113 [PMID: 18255614]
  18. IEEE Trans Neural Netw. 2011 Oct;22(10):1668-75 [PMID: 21843987]
  19. Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):E2885-94 [PMID: 22991468]
  20. Phys Rev Lett. 1993 Aug 23;71(8):1280-1283 [PMID: 10055496]
  21. Nat Rev Neurosci. 2001 Oct;2(10):704-16 [PMID: 11584308]
  22. Appl Opt. 1993 Sep 10;32(26):5026-35 [PMID: 20856307]
  23. Biol Cybern. 1989;61(2):125-8 [PMID: 2742916]
  24. Opt Express. 2014 Jan 27;22(2):1440-51 [PMID: 24515151]
  25. IEEE Trans Neural Netw. 2006 May;17(3):820-4 [PMID: 16722187]
  26. Neural Comput. 2006 Jul;18(7):1527-54 [PMID: 16764513]
  27. IEEE Trans Neural Netw. 1999;10(2):272-83 [PMID: 18252526]
  28. IEEE Trans Neural Netw. 2011 Nov;22(11):1744-56 [PMID: 21954206]
  29. Med Biol. 1978 Apr;56(2):110-6 [PMID: 661400]
  30. Opt Express. 2010 Oct 11;18(21):22446-61 [PMID: 20941144]
  31. Opt Express. 2007 Dec 24;15(26):17554-61 [PMID: 19551049]
  32. Biol Cybern. 1988;60(2):145-51 [PMID: 3228556]
  33. Nat Commun. 2014 Mar 24;5:3541 [PMID: 24662967]
  34. Appl Opt. 1995 Jul 10;34(20):4129-35 [PMID: 21052239]
  35. Neural Netw. 2013 Sep;45:50-61 [PMID: 23631905]

MeSH Term

Computer Systems
Equipment Design
Fiber Optic Technology
Neural Networks, Computer
Optical Fibers
Silicon Dioxide

Chemicals

Silicon Dioxide

Word Cloud

Created with Highcharts 10.0.0networksneuralopticalcoresmulti-coreimplementationartificialOpticalfiberamplificationcapabilitiesfibersHardwarefacilitatesreal-timeparallelprocessingmassivedatasetsofferlow-volume3Dconnectivitytogetherlargebandwidthminimalheatproductioncontrastelectronicpresentconceptualdesignin-fiberNeuronssynapsesrealizedindividualsilicasignalstransferredtransverselymeanscouplingPumpdrivenerbium-dopedmimicssynapticinteractionssimulatedthree-layeredfeed-forwardexploredSimulationssuggestcandifferentiategiveninputsdependingspecificconfigurationsimpliesclassificationlearningFinallytestedexperimentallybasicneuronalelementsusingcouplersamplifiersdemonstratedconfigurationimplementsneuron-likefunctionThereforedevicessimilarproposedpotentiallyservebuildingblocksfuturelarge-scalesmall-volumeNeuralwithinoptic

Similar Articles

Cited By