Novel Use of Flu Surveillance Data: Evaluating Potential of Sentinel Populations for Early Detection of Influenza Outbreaks.

Ashlynn R Daughton, Nileena Velappan, Esteban Abeyta, Reid Priedhorsky, Alina Deshpande
Author Information
  1. Ashlynn R Daughton: Analytics, Intelligence and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America. ORCID
  2. Nileena Velappan: Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America.
  3. Esteban Abeyta: Analytics, Intelligence and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America.
  4. Reid Priedhorsky: High Performance Computing Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America.
  5. Alina Deshpande: Analytics, Intelligence and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America.

Abstract

Influenza causes significant morbidity and mortality each year, with 2-8% of weekly outpatient visits around the United States for influenza-like-illness (ILI) during the peak of the season. Effective use of existing flu surveillance data allows officials to understand and predict current flu outbreaks and can contribute to reductions in influenza morbidity and mortality. Previous work used the 2009-2010 influenza season to investigate the possibility of using existing military and civilian surveillance systems to improve early detection of flu outbreaks. Results suggested that civilian surveillance could help predict outbreak trajectory in local military installations. To further test that hypothesis, we compare pairs of civilian and military outbreaks in seven locations between 2000 and 2013. We find no predictive relationship between outbreak peaks or time series of paired outbreaks. This larger study does not find evidence to support the hypothesis that civilian data can be used as sentinel surveillance for military installations. We additionally investigate the effect of modifying the ILI case definition between the standard Department of Defense definition, a more specific definition proposed in literature, and confirmed Influenza A. We find that case definition heavily impacts results. This study thus highlights the importance of careful selection of case definition, and appropriate consideration of case definition in the interpretation of results.

References

  1. Jpn J Infect Dis. 2012 Jul;65(4):289-94 [PMID: 22814149]
  2. J Med Virol. 2012 Dec;84(12):1980-4 [PMID: 23080506]
  3. MMWR Morb Mortal Wkly Rep. 2009 May 8;58(17):467-70 [PMID: 19444150]
  4. MMWR Morb Mortal Wkly Rep. 2015 Jun 5;64(21):583-90 [PMID: 26042650]
  5. JAMA. 2004 Sep 15;292(11):1333-40 [PMID: 15367555]
  6. Glob Public Health. 2012;7(7):670-81 [PMID: 22823595]
  7. PLoS Comput Biol. 2013;9(5):e1003064 [PMID: 23696723]
  8. BMC Infect Dis. 2014 Jan 30;14:50 [PMID: 24479824]
  9. MMWR Morb Mortal Wkly Rep. 2015 Sep 11;64(35):981-4 [PMID: 26355422]
  10. MSMR. 2015 Sep;22(9):2-7 [PMID: 26418885]
  11. PLoS One. 2014 Jan 24;9(1):e84873 [PMID: 24475034]
  12. Theor Biol Med Model. 2011 Jan 26;8:2 [PMID: 21269441]
  13. MMWR Morb Mortal Wkly Rep. 2010 Dec 10;59(48):1586-90 [PMID: 21150867]
  14. AMIA Annu Symp Proc. 2008 Nov 06;:76-80 [PMID: 18999264]
  15. MMWR Morb Mortal Wkly Rep. 2009 Aug 7;58(30):826-9 [PMID: 19661856]

MeSH Term

Databases, Factual
Disease Outbreaks
Female
Humans
Influenza, Human
Male
Models, Biological
United States

Word Cloud

Created with Highcharts 10.0.0definitionsurveillanceoutbreaksmilitaryciviliancaseInfluenzaflufindmorbiditymortalityILIseasonexistingdatapredictcaninfluenzausedinvestigateoutbreakinstallationshypothesisstudyresultscausessignificantyear2-8%weeklyoutpatientvisitsaroundUnitedStatesinfluenza-like-illnesspeakEffectiveuseallowsofficialsunderstandcurrentcontributereductionsPreviouswork2009-2010possibilityusingsystemsimproveearlydetectionResultssuggestedhelptrajectorylocaltestcomparepairssevenlocations20002013predictiverelationshippeakstimeseriespairedlargerevidencesupportsentineladditionallyeffectmodifyingstandardDepartmentDefensespecificproposedliteratureconfirmedheavilyimpactsthushighlightsimportancecarefulselectionappropriateconsiderationinterpretationNovelUseFluSurveillanceData:EvaluatingPotentialSentinelPopulationsEarlyDetectionOutbreaks

Similar Articles

Cited By