Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity.

Dejan Pecevski, Wolfgang Maass
Author Information
  1. Dejan Pecevski: Institute for Theoretical Computer Science, Graz University of Technology , A-8010 Graz, Austria.
  2. Wolfgang Maass: Institute for Theoretical Computer Science, Graz University of Technology , A-8010 Graz, Austria.

Abstract

Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how probabilistic inference could be performed by networks of neurons in the brain. We propose here a model that can also explain how such neural network could acquire the necessary information for that from examples. We show that spike-timing-dependent plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition a fundamental building block for that: probabilistic associations between neurons that represent through their firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive manner the resulting network is enabled to extract statistical information from complex input streams, and to build an internal model for the distribution p (*) that generates the examples it receives. This holds even if p (*) contains higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation. Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision making, and other types of probabilistic inference.

Keywords

References

  1. Chaos. 2010 Sep;20(3):037112 [PMID: 20887078]
  2. Neural Comput. 2006 Jun;18(6):1318-48 [PMID: 16764506]
  3. Science. 2002 Mar 8;295(5561):1907-10 [PMID: 11884759]
  4. Neural Comput. 2009 Nov;21(11):3010-56 [PMID: 19686065]
  5. Neuron. 2015 Oct 21;88(2):264-76 [PMID: 26494276]
  6. Front Neuroinform. 2014 Aug 14;8:70 [PMID: 25177291]
  7. PLoS Comput Biol. 2011 Dec;7(12):e1002294 [PMID: 22219717]
  8. Annu Rev Neurosci. 2004;27:419-51 [PMID: 15217339]
  9. Nat Neurosci. 2006 Nov;9(11):1432-8 [PMID: 17057707]
  10. Nat Rev Neurosci. 2008 Apr;9(4):292-303 [PMID: 18319728]
  11. Neural Comput. 2002 Aug;14(8):1771-800 [PMID: 12180402]
  12. PLoS Comput Biol. 2011 Nov;7(11):e1002211 [PMID: 22096452]
  13. J Neurosci. 2011 Oct 26;31(43):15310-9 [PMID: 22031877]
  14. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2554-8 [PMID: 6953413]
  15. Front Neuroinform. 2009 May 27;3:11 [PMID: 19543450]
  16. Science. 1995 May 26;268(5214):1158-61 [PMID: 7761831]
  17. Nat Neurosci. 2013 Feb;16(2):139-45 [PMID: 23354387]
  18. PLoS Biol. 2005 Mar;3(3):e68 [PMID: 15737062]
  19. Curr Opin Neurobiol. 2003 Apr;13(2):150-8 [PMID: 12744967]
  20. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8616-20 [PMID: 7567985]
  21. Psychol Sci. 2006 Sep;17(9):767-73 [PMID: 16984293]
  22. Neural Comput. 2009 Sep;21(9):2502-23 [PMID: 19548806]
  23. PLoS Comput Biol. 2013 Apr;9(4):e1003037 [PMID: 23633941]
  24. Science. 2009 Aug 7;325(5941):756-60 [PMID: 19661433]
  25. PLoS Comput Biol. 2014 Mar 27;10(3):e1003511 [PMID: 24675787]
  26. J Comput Neurosci. 2006 Aug;21(1):35-49 [PMID: 16633938]
  27. Proc Natl Acad Sci U S A. 1984 May;81(10):3088-92 [PMID: 6587342]
  28. Trends Cogn Sci. 2014 Oct;18(10):497-500 [PMID: 25001609]
  29. Learn Mem. 2003 Nov-Dec;10(6):456-65 [PMID: 14657257]
  30. Science. 2011 Jan 7;331(6013):83-7 [PMID: 21212356]
  31. Trends Neurosci. 2010 Jan;33(1):17-26 [PMID: 19889466]
  32. Neural Comput. 2013 Jun;25(6):1371-407 [PMID: 23517096]
  33. Cognition. 2013 Feb;126(2):285-300 [PMID: 23200511]
  34. Curr Opin Neurobiol. 2015 Dec;35:66-73 [PMID: 26176433]
  35. Neuron. 2001 Dec 20;32(6):1149-64 [PMID: 11754844]
  36. J Neurosci. 2013 Jun 5;33(23):9565-75 [PMID: 23739954]
  37. Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18772-7 [PMID: 18000059]
  38. Nat Neurosci. 2006 Dec;9(12):1472-3 [PMID: 17099707]
  39. Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5239-44 [PMID: 15795376]
  40. J Physiol Paris. 2009 Jan-Mar;103(1-2):73-87 [PMID: 19500669]
  41. Neural Comput. 2006 Jul;18(7):1527-54 [PMID: 16764513]
  42. J Neurophysiol. 2004 Jul;92(1):341-8 [PMID: 14973317]
  43. Neural Comput. 2008 Jan;20(1):118-45 [PMID: 18045003]
  44. Psychol Sci. 2008 Jul;19(7):645-7 [PMID: 18727777]
  45. Nature. 1991 May 16;351(6323):228-30 [PMID: 2041568]
  46. Neuron. 2008 Dec 26;60(6):1142-52 [PMID: 19109917]
  47. Nature. 2005 Feb 24;433(7028):868-73 [PMID: 15729343]
  48. Neural Comput. 2012 Aug;24(8):1967-2006 [PMID: 22509963]
  49. Nature. 2013 Nov 7;503(7474):78-84 [PMID: 24201281]
  50. PLoS Comput Biol. 2013;9(11):e1003311 [PMID: 24244126]
  51. J Neurosci. 2011 Jul 27;31(30):10787-802 [PMID: 21795531]
  52. Nature. 2013 Jul 18;499(7458):336-40 [PMID: 23792559]
  53. Nature. 2013 May 30;497(7451):585-90 [PMID: 23685452]

MeSH Term

Action Potentials
Brain
Computer Simulation
Humans
Models, Neurological
Nerve Net
Neuronal Plasticity
Neurons
Probability Learning
Time Factors

Word Cloud

Created with Highcharts 10.0.0informationprobabilisticnetworkinferenceshowFurthermorecanmodelplasticitybrainextractcomplexuncertainuselearntdecisionmakingneuronsneuralexamplesgeneratesinternalp*NumerousexperimentaldataableoftenambiguousexperiencesSeveralmodelsproposedaimexplainingperformednetworksproposealsoexplainacquirenecessaryspike-timing-dependentcombinationintrinsicensemblespyramidalcellslateralinhibitionfundamentalbuildingblockthat:associationsrepresentfiringcurrentvaluesrandomvariablescombiningadaptivemotifsrecursivemannerresultingenabledstatisticalinputstreamsbuilddistributionreceivesholdsevencontainshigher-ordermomentsanalysislearningprocesssupportedrigoroustheoreticalfoundationimmediatelypredictiontypesLearningProbabilisticInferenceSpike-Timing-DependentPlasticitySTDPcomputation

Similar Articles

Cited By