Comparison of Parameter Estimation Methods in Stochastic Chemical Kinetic Models: Examples in Systems Biology.

Ankur Gupta, James B Rawlings
Author Information
  1. Ankur Gupta: Dept. of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53705.
  2. James B Rawlings: Dept. of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53705.

Abstract

Stochastic chemical kinetics has become a staple for mechanistically modeling various phenomena in systems biology. These models, even more so than their deterministic counterparts, pose a challenging problem in the estimation of kinetic parameters from experimental data. As a result of the inherent randomness involved in stochastic chemical kinetic models, the estimation methods tend to be statistical in nature. Three classes of estimation methods are implemented and compared in this paper. The first is the exact method, which uses the continuous-time Markov chain representation of stochastic chemical kinetics and is tractable only for a very restricted class of problems. The next class of methods is based on Markov chain Monte Carlo (MCMC) techniques. The third method, termed conditional density importance sampling (CDIS), is a new method introduced in this paper. The use of these methods is demonstrated on two examples taken from systems biology, one of which is a new model of single-cell viral infection. The applicability, strengths and weaknesses of the three classes of estimation methods are discussed. Using simulated data for the two examples, some guidelines are provided on experimental design to obtain more information from a limited number of measurements.

Keywords

References

  1. Syst Biol (Stevenage). 2006 Jul;153(4):168-78 [PMID: 16986618]
  2. J Chem Phys. 2007 Sep 7;127(9):094106 [PMID: 17824731]
  3. Science. 2004 Jun 18;304(5678):1811-4 [PMID: 15166317]
  4. J Theor Biol. 2006 Sep 7;242(1):101-16 [PMID: 16624324]
  5. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):814-9 [PMID: 9023339]
  6. Science. 2002 Aug 16;297(5584):1183-6 [PMID: 12183631]
  7. Biostatistics. 2012 Jan;13(1):153-65 [PMID: 21835814]
  8. J Chem Phys. 2007 Dec 7;127(21):214107 [PMID: 18067349]
  9. Cell. 2005 Jul 29;122(2):169-82 [PMID: 16051143]
  10. Genetics. 1998 Aug;149(4):1633-48 [PMID: 9691025]
  11. J Comput Biol. 2006 Apr;13(3):838-51 [PMID: 16706729]
  12. Cell. 2005 Dec 16;123(6):1025-36 [PMID: 16360033]
  13. Nature. 2003 Apr 10;422(6932):633-7 [PMID: 12687005]
  14. BMC Bioinformatics. 2010 Aug 06;11:414 [PMID: 20691037]
  15. Virology. 2012 Mar 1;424(1):11-7 [PMID: 22222212]
  16. J Chem Phys. 2005 Oct 22;123(16):164115 [PMID: 16268689]
  17. Ann Appl Stat. 2009 Sep 1;3(3):1204 [PMID: 20148133]
  18. BMC Syst Biol. 2010 Jul 21;4:99 [PMID: 20663171]
  19. Bull Math Biol. 2009 Oct;71(7):1671-92 [PMID: 19459014]
  20. Interface Focus. 2011 Dec 6;1(6):807-20 [PMID: 23226583]
  21. J Math Biol. 2007 Jan;54(1):1-26 [PMID: 16953443]
  22. Bioinformatics. 2007 Jan 1;23(1):84-91 [PMID: 17068087]
  23. J Chem Phys. 2005 Jan 1;122(1):14116 [PMID: 15638651]
  24. J Chem Phys. 2011 Apr 21;134(15):154109 [PMID: 21513377]

Grants

  1. R01 AI091646/NIAID NIH HHS
  2. R21 AI071197/NIAID NIH HHS
  3. R33 AI071197/NIAID NIH HHS

Word Cloud

Created with Highcharts 10.0.0estimationmethodschemicalkineticssystemsbiologystochasticmethodStochasticmodelingmodelskineticexperimentaldataclassespaperMarkovchainclassnewtwoexamplesbecomestaplemechanisticallyvariousphenomenaevendeterministiccounterpartsposechallengingproblemparametersresultinherentrandomnessinvolvedtendstatisticalnatureThreeimplementedcomparedfirstexactusescontinuous-timerepresentationtractablerestrictedproblemsnextbasedMonteCarloMCMCtechniquesthirdtermedconditionaldensityimportancesamplingCDISintroducedusedemonstratedtakenonemodelsingle-cellviralinfectionapplicabilitystrengthsweaknessesthreediscussedUsingsimulatedguidelinesprovideddesignobtaininformationlimitednumbermeasurementsComparisonParameterEstimationMethodsChemicalKineticModels:ExamplesSystemsBiologyBayesianinferencecomputationalparameter

Similar Articles

Cited By