Crystallinity Modulation of Layered Carbon Nitride for Enhanced Photocatalytic Activities.

Jianhai Wang, Yanfei Shen, Ying Li, Songqin Liu, Yuanjian Zhang
Author Information
  1. Jianhai Wang: Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Optoelectronic Functional Materials and, Engineering Laboratory, School of Chemistry and, Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China.
  2. Yanfei Shen: Medical School, Southeast University, Nanjing, 210009, P.R. China.
  3. Ying Li: Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Optoelectronic Functional Materials and, Engineering Laboratory, School of Chemistry and, Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China.
  4. Songqin Liu: Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Optoelectronic Functional Materials and, Engineering Laboratory, School of Chemistry and, Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China.
  5. Yuanjian Zhang: Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Optoelectronic Functional Materials and, Engineering Laboratory, School of Chemistry and, Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China. Yuanjian.Zhang@seu.edu.cn. ORCID

Abstract

As an emerging metal-free semiconductor, covalently bonded Carbon Nitride (CN) has attracted much attention in photocatalysis. However, drawbacks such as a high recombination rate of excited electrons and holes hinder its potential applications. Tailoring the crystallinity of semiconductors is an important way to suppress unwanted charge recombination, but has rarely been applied to CN so far. Herein, a simple method to synthesize CN of high crystallinity by protonation of specific intermediate species during conventional polymerization is reported. Interestingly, the as-obtained CN exhibited improved photocatalytic activities of up to seven times those of the conventional bulk CN. This approach, with only a slight change to the conventional method, provides a facile way to effectively regulate the crystallinity of bulk CN to improve its photocatalytic activities and sheds light on large-scale industrial applications of CN with high efficiency for sustainable energy.

Keywords

References

  1. Angew Chem Int Ed Engl. 2015 Oct 26;54(44):12868-84 [PMID: 26424620]
  2. Science. 2011 Feb 11;331(6018):746-50 [PMID: 21252313]
  3. Angew Chem Int Ed Engl. 2014 Aug 25;53(35):9240-5 [PMID: 25045013]
  4. Langmuir. 2009 Sep 1;25(17):10397-401 [PMID: 19705905]
  5. J Am Chem Soc. 2010 Aug 25;132(33):11642-8 [PMID: 20681594]
  6. J Am Chem Soc. 2013 May 15;135(19):7118-21 [PMID: 23647353]
  7. J Am Chem Soc. 2009 Feb 11;131(5):1680-1 [PMID: 19191697]
  8. Nat Mater. 2009 Jan;8(1):76-80 [PMID: 18997776]
  9. J Am Chem Soc. 2014 Feb 5;136(5):1730-3 [PMID: 24432762]
  10. Chemistry. 2016 Aug 22;22(35):12449-54 [PMID: 27436164]
  11. Chem Asian J. 2010 Jun 1;5(6):1307-11 [PMID: 20340158]
  12. J Am Chem Soc. 2009 Jan 14;131(1):50-1 [PMID: 19072044]
  13. Nature. 2001 Dec 6;414(6864):625-7 [PMID: 11740556]
  14. J Am Chem Soc. 2015 Jan 28;137(3):1064-72 [PMID: 25537611]
  15. Chemistry. 2008;14(27):8177-82 [PMID: 18663712]
  16. Anal Chem. 2013 Jun 4;85(11):5595-9 [PMID: 23650957]
  17. Angew Chem Int Ed Engl. 2014 Jul 14;53(29):7450-5 [PMID: 24838808]
  18. J Am Chem Soc. 2013 Jan 9;135(1):18-21 [PMID: 23244197]
  19. Angew Chem Int Ed Engl. 2014 Oct 6;53(41):11001-5 [PMID: 25124195]
  20. Chem Commun (Camb). 2015 Jan 18;51(5):858-61 [PMID: 25429376]
  21. ACS Appl Mater Interfaces. 2016 May 25;8(20):13058-63 [PMID: 27148889]
  22. ACS Appl Mater Interfaces. 2013 Nov 13;5(21):11392-401 [PMID: 24144400]
  23. Chem Commun (Camb). 2012 Apr 7;48(28):3430-2 [PMID: 22358113]
  24. Chemistry. 2011 Mar 7;17(11):3213-21 [PMID: 21312298]
  25. Science. 2015 Feb 27;347(6225):970-4 [PMID: 25722405]
  26. Angew Chem Int Ed Engl. 2012 Nov 19;51(47):11814-8 [PMID: 23081850]

Word Cloud

Created with Highcharts 10.0.0CNhighcrystallinityconventionalcarbonnitriderecombinationapplicationswaymethodprotonationpolymerizationphotocatalyticactivitiesbulkemergingmetal-freesemiconductorcovalentlybondedattractedmuchattentionphotocatalysisHoweverdrawbacksrateexcitedelectronsholeshinderpotentialTailoringsemiconductorsimportantsuppressunwantedchargerarelyappliedfarHereinsimplesynthesizespecificintermediatespeciesreportedInterestinglyas-obtainedexhibitedimprovedseventimesapproachslightchangeprovidesfacileeffectivelyregulateimproveshedslightlarge-scaleindustrialefficiencysustainableenergyCrystallinityModulationLayeredCarbonNitrideEnhancedPhotocatalyticActivitiescrystalengineeringphotochemistry

Similar Articles

Cited By