Tankyrase inhibition aggravates kidney injury in the absence of CD2AP.

S Kuusela, H Wang, A A Wasik, H Suleiman, S Lehtonen
Author Information
  1. S Kuusela: Department of Pathology, University of Helsinki, Helsinki, Finland.
  2. H Wang: Department of Pathology, University of Helsinki, Helsinki, Finland.
  3. A A Wasik: Department of Pathology, University of Helsinki, Helsinki, Finland.
  4. H Suleiman: HHMI/Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
  5. S Lehtonen: Department of Pathology, University of Helsinki, Helsinki, Finland. ORCID

Abstract

Inappropriate activation of the Wnt/β-catenin pathway has been indicated in podocyte dysfunction and injury, and shown to contribute to the development and progression of nephropathy. Tankyrases, multifunctional poly(ADP-ribose) polymerase (PARP) superfamily members with features of both signaling and cytoskeletal proteins, antagonize Wnt/β-catenin signaling. We found that tankyrases interact with CD2-associated protein (CD2AP), a protein essential for kidney ultrafiltration as CD2AP-knockout (CD2AP-/-) mice die of kidney failure at the age of 6-7 weeks. We further observed that tankyrase-mediated total poly-(ADP-ribosyl)ation (PARylation), a post-translational modification implicated in kidney injury, was increased in mouse kidneys and cultured podocytes in the absence of CD2AP. The data revealed increased activity of β-catenin, and upregulation of lymphoid enhancer factor 1 (LEF1) (mediator of Wnt/β-catenin pathway) and fibronectin (downstream target of Wnt/β-catenin) in CD2AP-/- podocytes. Total PARylation and active β-catenin were reduced in CD2AP-/- podocytes by tankyrase inhibitor XAV939 treatment. However, instead of ameliorating podocyte injury, XAV939 further upregulated LEF1, failed to downregulate fibronectin and induced plasminogen activator inhibitor-1 (PAI-1) that associates with podocyte injury. In zebrafish, administration of XAV939 to CD2AP-depleted larvae aggravated kidney injury and increased mortality. Collectively, the data reveal sustained activation of the Wnt/β-catenin pathway in CD2AP-/- podocytes, contributing to podocyte injury. However, we observed that inhibition of the PARylation activity of tankyrases in the absence of CD2AP was deleterious to kidney function. This indicates that balance of the PARylation activity of tankyrases, maintained by CD2AP, is essential for normal kidney function. Furthermore, the data reveal that careful contemplation is required when targeting Wnt/β-catenin pathway to treat proteinuric kidney diseases associated with impaired CD2AP.

References

  1. J Am Soc Nephrol. 2001 Aug;12(8):1589-98 [PMID: 11461930]
  2. Dev Biol. 2005 Sep 15;285(2):316-29 [PMID: 16102746]
  3. Cell. 2011 Dec 9;147(6):1324-39 [PMID: 22153076]
  4. Nat Rev Mol Cell Biol. 2009 Jul;10(7):468-77 [PMID: 19536106]
  5. Science. 1998 Nov 20;282(5393):1484-7 [PMID: 9822378]
  6. Biochem J. 2007 Mar 1;402(2):279-90 [PMID: 17059388]
  7. Diabetes. 2006 Nov;55(11):3004-12 [PMID: 17065336]
  8. Differentiation. 2008 May;76(5):506-17 [PMID: 18177421]
  9. Ann Rheum Dis. 2013 Sep 1;72(9):1575-80 [PMID: 23148305]
  10. Nephrol Dial Transplant. 2009 Jun;24(6):1858-64 [PMID: 19131354]
  11. Mol Cell. 1998 Mar;1(4):575-82 [PMID: 9660941]
  12. Am J Physiol Renal Physiol. 2001 Oct;281(4):F769-77 [PMID: 11553524]
  13. Nephrol Dial Transplant. 2013 Apr;28(4):846-55 [PMID: 23197680]
  14. J Neurochem. 2009 Apr;109(2):403-15 [PMID: 19222706]
  15. J Clin Invest. 2001 Jul;108(2):289-301 [PMID: 11457882]
  16. J Nephrol. 2012 May-Jun;25(3):401-9 [PMID: 21928230]
  17. J Biol Chem. 2012 Feb 10;287(7):5164-72 [PMID: 22203675]
  18. J Biol Chem. 2000 Oct 20;275(42):32888-93 [PMID: 10913159]
  19. Kidney Int. 2011 Dec;80(11):1159-69 [PMID: 21832980]
  20. Mol Cell Biochem. 2005 Aug;276(1-2):183-92 [PMID: 16132700]
  21. PLoS One. 2012;7(11):e48670 [PMID: 23144924]
  22. Am J Pathol. 2004 Sep;165(3):923-36 [PMID: 15331416]
  23. Cancer Res. 2012 Jun 1;72(11):2822-32 [PMID: 22440753]
  24. Nat Clin Pract Nephrol. 2006 May;2(5):271-82 [PMID: 16932440]
  25. Kidney Int. 2007 Nov;72(10):1198-203 [PMID: 17713465]
  26. Cell. 1998 Sep 4;94(5):667-77 [PMID: 9741631]
  27. Biochimie. 2008 Jan;90(1):83-92 [PMID: 17825467]
  28. Traffic. 2003 Feb;4(2):97-112 [PMID: 12559036]
  29. J Biol Chem. 2000 Dec 8;275(49):38437-44 [PMID: 10988299]
  30. J Med Chem. 2012 Feb 9;55(3):1360-7 [PMID: 22233320]
  31. J Am Soc Nephrol. 2009 Apr;20(4):765-76 [PMID: 19297557]
  32. J Am Soc Nephrol. 2002 Jul;13(7):1766-72 [PMID: 12089372]
  33. J Am Soc Nephrol. 2006 Nov;17(11):2999-3012 [PMID: 17035608]
  34. PLoS One. 2008 Jul 09;3(7):e2639 [PMID: 18612384]
  35. Mol Biol Cell. 2012 Sep;23(17):3370-9 [PMID: 22809625]
  36. FASEB J. 2015 Nov;29(11):4435-48 [PMID: 26169937]
  37. Genome Integr. 2011 Feb 12;2(1):4 [PMID: 21314979]
  38. Nephrol Dial Transplant. 2010 Aug;25(8):2437-46 [PMID: 20237062]
  39. J Biol Chem. 2004 Aug 27;279(35):37004-12 [PMID: 15213232]
  40. Cell. 2011 Dec 9;147(6):1340-54 [PMID: 22153077]
  41. J Am Soc Nephrol. 2009 Sep;20(9):1997-2008 [PMID: 19628668]
  42. Nat Biotechnol. 2012 Feb 19;30(3):283-8 [PMID: 22343925]
  43. J Biol Chem. 2010 Aug 6;285(32):24665-75 [PMID: 20519507]
  44. Biochem J. 2005 Oct 15;391(Pt 2):177-84 [PMID: 16076287]
  45. Am J Physiol Renal Physiol. 2007 Nov;293(5):F1746-50 [PMID: 17699558]
  46. Curr Opin Cell Biol. 2008 Apr;20(2):119-25 [PMID: 18339531]
  47. PLoS Genet. 2013;9(8):e1003603 [PMID: 23966864]
  48. Mol Cell Biol. 2012 Aug;32(15):3044-53 [PMID: 22645305]
  49. Nat Genet. 2001 May;28(1):53-7 [PMID: 11326276]
  50. Biochem J. 1999 Sep 1;342 ( Pt 2):249-68 [PMID: 10455009]
  51. Nature. 2009 Oct 1;461(7264):614-20 [PMID: 19759537]
  52. J Am Soc Nephrol. 2009 Apr;20(4):787-97 [PMID: 19329763]
  53. Mol Cell Endocrinol. 2010 Oct 26;328(1-2):70-9 [PMID: 20654688]
  54. Cancer Res. 2014 Mar 1;74(5):1495-505 [PMID: 24419084]
  55. Science. 1999 Oct 8;286(5438):312-5 [PMID: 10514378]
  56. Cell Res. 2012 Aug;22(8):1246-57 [PMID: 22473005]

Grants

  1. 242820/European Research Council

MeSH Term

Adaptor Proteins, Signal Transducing
Animals
Cell Line, Transformed
Cytoskeletal Proteins
Embryo, Nonmammalian
Fibronectins
Genes, Lethal
HEK293 Cells
Heterocyclic Compounds, 3-Ring
Humans
Lymphoid Enhancer-Binding Factor 1
Male
Mice
Mice, Knockout
Podocytes
Poly Adenosine Diphosphate Ribose
Protein Processing, Post-Translational
Rats
Rats, Sprague-Dawley
Renal Insufficiency
Serpin E2
Signal Transduction
Tankyrases
Zebrafish
beta Catenin

Chemicals

Adaptor Proteins, Signal Transducing
CD2-associated protein
CTNNB1 protein, mouse
Cytoskeletal Proteins
Fibronectins
Heterocyclic Compounds, 3-Ring
Lef1 protein, mouse
Lymphoid Enhancer-Binding Factor 1
Serpin E2
Serpine2 protein, mouse
XAV939
beta Catenin
Poly Adenosine Diphosphate Ribose
Tankyrases
Tnks protein, mouse
tankyrase-2, mouse

Word Cloud

Created with Highcharts 10.0.0kidneyinjuryWnt/β-cateninCD2APpathwaypodocyteCD2AP-/-PARylationpodocytestankyrasesincreasedabsencedataactivityXAV939activationsignalingproteinessentialobservedβ-cateninLEF1fibronectinHoweverrevealinhibitionfunctionInappropriateindicateddysfunctionshowncontributedevelopmentprogressionnephropathyTankyrasesmultifunctionalpolyADP-ribosepolymerasePARPsuperfamilymembersfeaturescytoskeletalproteinsantagonizefoundinteractCD2-associatedultrafiltrationCD2AP-knockoutmicediefailureage6-7weekstankyrase-mediatedtotalpoly-ADP-ribosylationpost-translationalmodificationimplicatedmousekidneysculturedrevealedupregulationlymphoidenhancerfactor1mediatordownstreamtargetTotalactivereducedtankyraseinhibitortreatmentinsteadamelioratingupregulatedfaileddownregulateinducedplasminogenactivatorinhibitor-1PAI-1associateszebrafishadministrationCD2AP-depletedlarvaeaggravatedmortalityCollectivelysustainedcontributingdeleteriousindicatesbalancemaintainednormalFurthermorecarefulcontemplationrequiredtargetingtreatproteinuricdiseasesassociatedimpairedTankyraseaggravates

Similar Articles

Cited By