Joint modeling of longitudinal zero-inflated count and time-to-event data: A Bayesian perspective.

Huirong Zhu, Stacia M DeSantis, Sheng Luo
Author Information
  1. Huirong Zhu: Department of Biostatistics, The University of Texas Health Science Center at Houston, Houston, USA.
  2. Stacia M DeSantis: Department of Biostatistics, The University of Texas Health Science Center at Houston, Houston, USA.
  3. Sheng Luo: Department of Biostatistics, The University of Texas Health Science Center at Houston, Houston, USA.

Abstract

Longitudinal zero-inflated count data are encountered frequently in substance-use research when assessing the effects of covariates and risk factors on outcomes. Often, both the time to a terminal event such as death or dropout and repeated measure count responses are collected for each subject. In this setting, the longitudinal counts are censored by the terminal event, and the time to the terminal event may depend on the longitudinal outcomes. In the study described herein, we expand the class of joint models for longitudinal and survival data to accommodate zero-inflated counts and time-to-event data by using a Cox proportional hazards model with piecewise constant baseline hazard. We use a Bayesian framework via Markov chain Monte Carlo simulations implemented in the BUGS programming language. Via an extensive simulation study, we apply the joint model and obtain estimates that are more accurate than those of the corresponding independence model. We apply the proposed method to an alpha-tocopherol, beta-carotene lung cancer prevention study.

Keywords

References

  1. J Appl Stat. 2014 Jan 1;41(1): [PMID: 24298197]
  2. Stat Med. 1996 Aug 15;15(15):1663-85 [PMID: 8858789]
  3. Stat Med. 2013 Dec 20;32(29):5133-44 [PMID: 23913574]
  4. Stat Med. 2005 Mar 15;24(5):671-91 [PMID: 15558580]
  5. Biostatistics. 2000 Dec;1(4):465-80 [PMID: 12933568]
  6. Biometrics. 2006 Jun;62(2):432-45 [PMID: 16918907]
  7. Stat Med. 2014 Feb 20;33(4):580-94 [PMID: 24009073]
  8. JAMA. 2003 Jul 23;290(4):476-85 [PMID: 12876090]
  9. Stat Med. 2007 Jun 30;26(14):2813-35 [PMID: 17124698]
  10. Biometrics. 2008 Jun;64(2):611-9 [PMID: 17725808]
  11. Stat Methods Med Res. 2017 Aug;26(4):1774-1786 [PMID: 26113383]
  12. Biometrics. 2001 Mar;57(1):219-23 [PMID: 11252601]
  13. Biometrics. 1997 Mar;53(1):330-9 [PMID: 9147598]
  14. Biom J. 2011 Sep;53(5):716-34 [PMID: 21887792]
  15. Biometrics. 2003 Sep;59(3):686-93 [PMID: 14601770]
  16. Stat Med. 2008 Aug 30;27(19):3789-804 [PMID: 18407584]
  17. Stat Med. 2012 Dec 20;31(29):4074-86 [PMID: 22826194]

Grants

  1. R01 NS091307/NINDS NIH HHS
  2. U01 NS043127/NINDS NIH HHS
  3. R03 AA020648/NIAAA NIH HHS
  4. KL2 TR000370/NCATS NIH HHS
  5. UL1 TR000371/NCATS NIH HHS

MeSH Term

Bayes Theorem
Biomedical Research
Longitudinal Studies
Markov Chains
Monte Carlo Method
Outcome Assessment, Health Care
Poisson Distribution
Survival Analysis

Word Cloud

Created with Highcharts 10.0.0modelcountdatalongitudinalzero-inflatedterminaleventstudyoutcomestimecountsjointtime-to-eventBayesianMarkovchainMonteCarloapplyJointLongitudinalencounteredfrequentlysubstance-useresearchassessingeffectscovariatesriskfactorsOftendeathdropoutrepeatedmeasureresponsescollectedsubjectsettingcensoredmaydependdescribedhereinexpandclassmodelssurvivalaccommodateusingCoxproportionalhazardspiecewiseconstantbaselinehazarduseframeworkviasimulationsimplementedBUGSprogramminglanguageViaextensivesimulationobtainestimatesaccuratecorrespondingindependenceproposedmethodalpha-tocopherolbeta-carotenelungcancerpreventionmodelingdata:perspectivemixedzero-inflationgeneralizedPoisson

Similar Articles

Cited By