Digital-Analog Quantum Simulation of Spin Models in Trapped Ions.

Iñigo Arrazola, Julen S Pedernales, Lucas Lamata, Enrique Solano
Author Information
  1. Iñigo Arrazola: Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain.
  2. Julen S Pedernales: Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain.
  3. Lucas Lamata: Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain.
  4. Enrique Solano: Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain.

Abstract

We propose a method to simulate spin models in trapped ions using a digital-analog approach, consisting in a suitable gate decomposition in terms of analog blocks and digital steps. In this way, we show that the quantum dynamics of an enhanced variety of spin models could be implemented with substantially less number of gates than a fully digital approach. Typically, analog blocks are built of multipartite dynamics providing the complexity of the simulated model, while the digital steps are local operations bringing versatility to it. Finally, we describe a possible experimental implementation in trapped-ion technologies.

References

  1. Phys Rev Lett. 2012 May 11;108(19):190502 [PMID: 23003013]
  2. Nat Commun. 2015 Jul 08;6:7654 [PMID: 26153660]
  3. Phys Rev Lett. 2013 Aug 30;111(9):090503 [PMID: 24033011]
  4. Science. 1996 Aug 23;273(5278):1073-8 [PMID: 8688088]
  5. Nature. 2010 Jan 7;463(7277):68-71 [PMID: 20054392]
  6. Phys Rev Lett. 2014 Nov 28;113(22):220501 [PMID: 25494060]
  7. Phys Rev Lett. 2002 Dec 9;89(24):247901 [PMID: 12484980]
  8. Nature. 2016 Jun 08;534(7606):222-6 [PMID: 27279216]
  9. Phys Rev Lett. 2012 Nov 16;109(20):200501 [PMID: 23215466]
  10. Phys Rev Lett. 2011 Nov 11;107(20):207209 [PMID: 22181770]
  11. Science. 2009 Oct 2;326(5949):108-11 [PMID: 19797653]
  12. Phys Rev Lett. 2011 Feb 11;106(6):060503 [PMID: 21405450]
  13. Science. 2013 May 3;340(6132):583-7 [PMID: 23641112]
  14. Phys Rev Lett. 2011 Apr 1;106(13):130506 [PMID: 21517367]
  15. Nature. 2014 Jul 10;511(7508):202-5 [PMID: 25008526]
  16. Nature. 2012 Apr 25;484(7395):489-92 [PMID: 22538611]
  17. Phys Rev Lett. 2011 Dec 23;107(26):260501 [PMID: 22243143]
  18. Phys Rev Lett. 2004 May 21;92(20):207901 [PMID: 15169383]
  19. Nature. 2010 Jun 3;465(7298):590-3 [PMID: 20520708]
  20. Nature. 2014 Jul 10;511(7508):198-201 [PMID: 25008525]
  21. Phys Rev Lett. 2007 Jun 22;98(25):253005 [PMID: 17678023]
  22. Science. 2011 Oct 7;334(6052):57-61 [PMID: 21885735]

Word Cloud

Created with Highcharts 10.0.0digitalspinmodelsapproachanalogblocksstepsdynamicsproposemethodsimulatetrappedionsusingdigital-analogconsistingsuitablegatedecompositiontermswayshowquantumenhancedvarietyimplementedsubstantiallylessnumbergatesfullyTypicallybuiltmultipartiteprovidingcomplexitysimulatedmodellocaloperationsbringingversatilityFinallydescribepossibleexperimentalimplementationtrapped-iontechnologiesDigital-AnalogQuantumSimulationSpinModelsTrappedIons

Similar Articles

Cited By