Label-Free and Continuous-Flow Ferrohydrodynamic Separation of HeLa Cells and Blood Cells in Biocompatible Ferrofluids.

Wujun Zhao, Taotao Zhu, Rui Cheng, Yufei Liu, Jian He, Hong Qiu, Lianchun Wang, Tamas Nagy, Troy D Querec, Elizabeth R Unger, Leidong Mao
Author Information
  1. Wujun Zhao: Department of Chemistry, The University of Georgia Athens, GA 30602, USA.
  2. Taotao Zhu: Department of Chemistry, The University of Georgia Athens, GA 30602, USA.
  3. Rui Cheng: College of Engineering, The University of Georgia, 220 Riverbend Road Room, 166, Athens, GA 30602, USA.
  4. Yufei Liu: Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
  5. Jian He: Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
  6. Hong Qiu: Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA.
  7. Lianchun Wang: Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA.
  8. Tamas Nagy: Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA.
  9. Troy D Querec: Chronic Viral Diseases Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic, Infectious Diseases Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
  10. Elizabeth R Unger: Chronic Viral Diseases Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic, Infectious Diseases Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
  11. Leidong Mao: College of Engineering, The University of Georgia, 220 Riverbend Road Room, 166, Athens, GA 30602, USA.

Abstract

In this study, a label-free, low-cost, and fast ferrohydrodynamic cell separation scheme is demonstrated using HeLa cells (an epithelial cell line) and red blood cells. The separation is based on cell size difference, and conducted in a custom-made biocompatible ferrofluid that retains the viability of cells during and after the assay for downstream analysis. The scheme offers moderate-throughput (≈10 cells h for a single channel device) and extremely high recovery rate (>99%) without the use of any label. It is envisioned that this separation scheme will have clinical applications in settings where rapid cell enrichment and removal of contaminating blood will improve efficiency of screening and diagnosis such as cervical cancer screening based on mixed populations in exfoliated samples.

References

  1. Arch Pathol Lab Med. 2005 Sep;129(9):1097-9 [PMID: 16119979]
  2. Lab Chip. 2012 Jan 7;12(1):190-6 [PMID: 22076536]
  3. J Chromatogr A. 2009 Dec 25;1216(52):9055-62 [PMID: 19592004]
  4. Lab Chip. 2007 Dec;7(12):1644-59 [PMID: 18030382]
  5. Arch Pathol Lab Med. 2009 Dec;133(12):1912-6 [PMID: 19961244]
  6. Nano Lett. 2011 Apr 13;11(4):1681-4 [PMID: 21417363]
  7. Chem Rev. 2010 Mar 10;110(3):1518-63 [PMID: 19961177]
  8. Lab Chip. 2011 Jun 7;11(11):1902-10 [PMID: 21512692]
  9. ACS Nano. 2013 Mar 26;7(3):2705-16 [PMID: 23373586]
  10. Lab Chip. 2006 Aug;6(8):974-80 [PMID: 16874365]
  11. Anal Bioanal Chem. 2010 Aug;397(8):3249-67 [PMID: 20419490]
  12. J Exp Med. 1956 Feb 1;103(2):273-83 [PMID: 13286432]
  13. Sci Technol Adv Mater. 2009 May 22;10(1):014611 [PMID: 27877262]
  14. Biomicrofluidics. 2012 Oct 31;6(4):44106 [PMID: 24175006]
  15. Nano Lett. 2009 May;9(5):1812-7 [PMID: 19326920]
  16. Blood. 2001 Sep 1;98(5):1577-84 [PMID: 11520810]
  17. Lab Chip. 2007 Dec;7(12):1681-8 [PMID: 18030387]
  18. Anal Chem. 2012 Apr 3;84(7):3075-81 [PMID: 22380761]
  19. Lab Chip. 2011 Apr 7;11(7):1240-8 [PMID: 21186390]
  20. Microfluid Nanofluidics. 2012 Oct;13(4):645-654 [PMID: 26430394]
  21. Biomicrofluidics. 2011 Sep;5(3):34110-3411013 [PMID: 22662037]
  22. Nat Commun. 2012 Apr 24;3:794 [PMID: 22531179]
  23. Anal Chem. 2004 Dec 15;76(24):7250-6 [PMID: 15595866]
  24. Mech Res Commun. 2009 Jan 1;36(1):92-103 [PMID: 20046897]
  25. Lab Chip. 2008 Oct;8(10):1640-7 [PMID: 18813385]
  26. Arch Pathol Lab Med. 2005 Jan;129(1):23-5 [PMID: 15628904]
  27. Lab Chip. 2006 Jan;6(1):24-38 [PMID: 16372066]
  28. Nature. 2009 Feb 19;457(7232):999-1002 [PMID: 19225522]
  29. Lab Chip. 2014 Aug 7;14(15):2762-77 [PMID: 24903572]
  30. J Am Chem Soc. 2009 Jul 29;131(29):10049-58 [PMID: 19621960]
  31. Cytopathology. 1995 Dec;6(6):368-75 [PMID: 8770538]
  32. Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21478-83 [PMID: 19995975]
  33. Lab Chip. 2015 Feb 21;15(4):959-70 [PMID: 25537573]

Grants

  1. R21 HL131553/NHLBI NIH HHS
  2. R01 HL093339/NHLBI NIH HHS
  3. R21 GM104528/NIGMS NIH HHS
  4. P41 GM103390/NIGMS NIH HHS
  5. CC999999/Intramural CDC HHS
  6. P41 RR005351/NCRR NIH HHS

Word Cloud

Created with Highcharts 10.0.0cellcellsseparationschemeHeLabloodbasedwillscreeningCellsstudylabel-freelow-costfastferrohydrodynamicdemonstratedusingepitheliallineredsizedifferenceconductedcustom-madebiocompatibleferrofluidretainsviabilityassaydownstreamanalysisoffersmoderate-throughput≈10hsinglechanneldeviceextremelyhighrecoveryrate>99%withoutuselabelenvisionedclinicalapplicationssettingsrapidenrichmentremovalcontaminatingimproveefficiencydiagnosiscervicalcancermixedpopulationsexfoliatedsamplesLabel-FreeContinuous-FlowFerrohydrodynamicSeparationBloodBiocompatibleFerrofluids

Similar Articles

Cited By