The art of fin regeneration in zebrafish.

Catherine Pfefferli, Anna Jaźwińska
Author Information
  1. Catherine Pfefferli: Department of Biology University of Fribourg Ch. du Musée 10 1700 Fribourg Switzerland.
  2. Anna Jaźwińska: Department of Biology University of Fribourg Ch. du Musée 10 1700 Fribourg Switzerland.

Abstract

The zebrafish fin provides a valuable model to study the epimorphic type of regeneration, whereby the amputated part of the appendage is nearly perfectly replaced. To accomplish fin regeneration, two reciprocally interacting domains need to be established at the injury site, namely a wound epithelium and a blastema. The wound epithelium provides a supporting niche for the blastema, which contains mesenchyme-derived progenitor cells for the regenerate. The fate of blastemal daughter cells depends on their relative position with respect to the fin margin. The apical compartment of the outgrowth maintains its undifferentiated character, whereas the proximal descendants of the blastema progressively switch from the proliferation program to the morphogenesis program. A delicate balance between self-renewal and differentiation has to be continuously adjusted during the course of regeneration. This review summarizes the current knowledge about the cellular and molecular mechanisms of blastema formation, and discusses several studies related to the regulation of growth and morphogenesis during fin regeneration. A wide range of canonical signaling pathways has been implicated during the establishment and maintenance of the blastema. Epigenetic mechanisms play a crucial role in the regulation of cellular plasticity during the transition between differentiation states. Ion fluxes, gap-junctional communication and protein phosphatase activity have been shown to coordinate proliferation and tissue patterning in the caudal fin. The identification of the downstream targets of the fin regeneration signals and the discovery of mechanisms integrating the variety of input pathways represent exciting future aims in this fascinating field of research.

Keywords

References

  1. Dev Dyn. 2003 Feb;226(2):190-201 [PMID: 12557198]
  2. Development. 2013 Apr;140(7):1412-23 [PMID: 23462472]
  3. Dev Cell. 2011 May 17;20(5):725-32 [PMID: 21571228]
  4. Genome Biol. 2006;7(3):211 [PMID: 16584533]
  5. Dev Biol. 2009 Mar 15;327(2):410-8 [PMID: 19150347]
  6. Development. 1998 Nov;125(21):4175-84 [PMID: 9753672]
  7. Dev Biol. 2003 Dec 1;264(1):263-74 [PMID: 14623247]
  8. Nat Chem Biol. 2006 May;2(5):265-73 [PMID: 16565716]
  9. Dev Dyn. 2002 Mar;223(2):262-72 [PMID: 11836790]
  10. Dev Biol. 2000 Jun 15;222(2):347-58 [PMID: 10837124]
  11. Mech Dev. 1998 Dec;79(1-2):99-120 [PMID: 10349624]
  12. Epigenetics. 2013 Sep;8(9):899-906 [PMID: 23880758]
  13. Am Zool. 1970 May;10(2):119-32 [PMID: 5426254]
  14. Cell Rep. 2014 Feb 13;6(3):467-81 [PMID: 24485658]
  15. J Exp Zool. 1978 Mar;203(3):455-60 [PMID: 641481]
  16. BMC Dev Biol. 2014 Dec 31;14:49 [PMID: 25551555]
  17. Dev Biol. 2006 Nov 15;299(2):438-54 [PMID: 16959242]
  18. Dev Cell. 2011 May 17;20(5):713-24 [PMID: 21571227]
  19. Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8713-8 [PMID: 12060710]
  20. Acta Med Port. 2013 Sep-Oct;26(5):583-92 [PMID: 24192099]
  21. Int J Dev Biol. 2009;53(5-6):835-50 [PMID: 19557689]
  22. J Biol Chem. 2009 Nov 27;284(48):33642-53 [PMID: 19801676]
  23. Development. 2012 Mar;139(6):1188-97 [PMID: 22318227]
  24. Dev Biol. 2012 Jun 15;366(2):195-203 [PMID: 22542598]
  25. Mol Biol Cell. 2014 Dec 1;25(24):3835-50 [PMID: 25425556]
  26. Development. 2002 Jun;129(11):2607-17 [PMID: 12015289]
  27. Development. 2011 Sep;138(18):3897-905 [PMID: 21862555]
  28. Nature. 2010 Jul 8;466(7303):234-7 [PMID: 20574421]
  29. PLoS One. 2009 Jun 08;4(6):e5824 [PMID: 19503807]
  30. FEBS Lett. 2007 Jul 10;581(17):3297-302 [PMID: 17599838]
  31. Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19889-94 [PMID: 19897725]
  32. Science. 2005 Dec 23;310(5756):1957-60 [PMID: 16373575]
  33. Clin Pharmacol Ther. 2007 Jul;82(1):70-80 [PMID: 17495877]
  34. Dev Dyn. 2000 Oct;219(2):282-6 [PMID: 11002347]
  35. Dev Cell. 2012 Apr 17;22(4):879-86 [PMID: 22516203]
  36. Development. 2007 Feb;134(3):479-89 [PMID: 17185322]
  37. Dev Biol. 2006 Aug 15;296(2):450-7 [PMID: 16844108]
  38. Dev Dyn. 2003 Feb;226(2):237-44 [PMID: 12557202]
  39. PLoS Genet. 2014 Jan;10(1):e1004080 [PMID: 24453984]
  40. Nat Rev Mol Cell Biol. 2002 Aug;3(8):566-74 [PMID: 12154368]
  41. Dev Biol. 2011 Jun 1;354(1):160-72 [PMID: 21420398]
  42. Nature. 1982 Feb 25;295(5851):672-5 [PMID: 7057925]
  43. Dev Biol. 2012 May 15;365(2):424-33 [PMID: 22445510]
  44. Dev Biol. 2012 May 15;365(2):339-49 [PMID: 22426105]
  45. Development. 2013 Apr;140(7):1402-11 [PMID: 23344707]
  46. Genesis. 2013 Feb;51(2):75-82 [PMID: 23019186]
  47. Development. 2012 Jan;139(1):107-16 [PMID: 22096078]
  48. Dev Dyn. 2003 Feb;226(2):202-10 [PMID: 12557199]
  49. Dev Biol. 1984 Jun;103(2):319-28 [PMID: 6724131]
  50. Dev Biol. 2005 Feb 1;278(1):208-19 [PMID: 15649473]
  51. Int J Dev Biol. 1995 Apr;39(2):373-81 [PMID: 7669548]
  52. Trends Genet. 2013 Nov;29(11):611-20 [PMID: 23927865]
  53. Curr Biol. 2007 Aug 21;17(16):1390-5 [PMID: 17683938]
  54. Development. 2010 Mar;137(6):871-9 [PMID: 20179093]
  55. Biol Bull. 2011 Aug;221(1):62-78 [PMID: 21876111]
  56. Development. 2010 May;137(9):1407-20 [PMID: 20388652]
  57. Dev Biol. 2009 Jul 15;331(2):270-80 [PMID: 19445916]
  58. Dev Genes Evol. 2006 Oct;216(10):635-9 [PMID: 16586100]
  59. Cell Mol Life Sci. 2013 Oct;70(20):3907-27 [PMID: 23479131]
  60. Development. 1996 Dec;123:255-62 [PMID: 9007245]
  61. Annu Rev Biochem. 1996;65:475-502 [PMID: 8811187]
  62. Dev Dyn. 1995 Mar;202(3):271-83 [PMID: 7780176]
  63. BMC Biol. 2014 Apr 29;12:30 [PMID: 24779377]
  64. Dev Biol. 2008 May 15;317(2):541-8 [PMID: 18406403]
  65. Cell Mol Life Sci. 2008 Jan;65(1):73-9 [PMID: 18030417]
  66. Dev Cell. 2014 Mar 10;28(5):573-87 [PMID: 24561038]
  67. Development. 1994 Jul;120(7):1861-72 [PMID: 7924993]
  68. Cell Rep. 2014 Feb 13;6(3):482-98 [PMID: 24485659]
  69. Cell. 1996 Feb 9;84(3):381-8 [PMID: 8608591]
  70. FEBS Lett. 2011 Jun 6;585(11):1617-24 [PMID: 21569771]

Word Cloud

Created with Highcharts 10.0.0finregenerationblastemazebrafishmechanismsprovideswoundepitheliumcellsproliferationprogrammorphogenesisdifferentiationcellularregulationpathwayscaudalvaluablemodelstudyepimorphictypewherebyamputatedpartappendagenearlyperfectlyreplacedaccomplishtworeciprocallyinteractingdomainsneedestablishedinjurysitenamelysupportingnichecontainsmesenchyme-derivedprogenitorregeneratefateblastemaldaughterdependsrelativepositionrespectmarginapicalcompartmentoutgrowthmaintainsundifferentiatedcharacterwhereasproximaldescendantsprogressivelyswitchdelicatebalanceself-renewalcontinuouslyadjustedcoursereviewsummarizescurrentknowledgemolecularformationdiscussesseveralstudiesrelatedgrowthwiderangecanonicalsignalingimplicatedestablishmentmaintenanceEpigeneticplaycrucialroleplasticitytransitionstatesIonfluxesgap-junctionalcommunicationproteinphosphataseactivityshowncoordinatetissuepatterningidentificationdownstreamtargetssignalsdiscoveryintegratingvarietyinputrepresentexcitingfutureaimsfascinatingfieldresearchartepigenetics

Similar Articles

Cited By (112)