Neurocomputational mechanisms of prosocial learning and links to empathy.

Patricia L Lockwood, Matthew A J Apps, Vincent Valton, Essi Viding, Jonathan P Roiser
Author Information
  1. Patricia L Lockwood: Division of Psychology and Language Sciences, University College London, London WC1H 6BT, United Kingdom; Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, United Kingdom; patricia.lockwood@psy.ox.ac.uk. ORCID
  2. Matthew A J Apps: Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, United Kingdom;
  3. Vincent Valton: Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom.
  4. Essi Viding: Division of Psychology and Language Sciences, University College London, London WC1H 6BT, United Kingdom;
  5. Jonathan P Roiser: Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom.

Abstract

Reinforcement learning theory powerfully characterizes how we learn to benefit ourselves. In this theory, prediction errors-the difference between a predicted and actual outcome of a choice-drive learning. However, we do not operate in a social vacuum. To behave prosocially we must learn the consequences of our actions for other people. Empathy, the ability to vicariously experience and understand the affect of others, is hypothesized to be a critical facilitator of prosocial behaviors, but the link between empathy and prosocial behavior is still unclear. During functional magnetic resonance imaging (fMRI) participants chose between different stimuli that were probabilistically associated with rewards for themselves (self), another person (prosocial), or no one (control). Using computational modeling, we show that people can learn to obtain rewards for others but do so more slowly than when learning to obtain rewards for themselves. fMRI revealed that activity in a posterior portion of the subgenual anterior cingulate cortex/basal forebrain (sgACC) drives learning only when we are acting in a prosocial context and signals a prosocial prediction error conforming to classical principles of reinforcement learning theory. However, there is also substantial variability in the neural and behavioral efficiency of prosocial learning, which is predicted by trait empathy. More empathic people learn more quickly when benefitting others, and their sgACC response is the most selective for prosocial learning. We thus reveal a computational mechanism driving prosocial learning in humans. This framework could provide insights into atypical prosocial behavior in those with disorders of social cognition.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):80-5 [PMID: 26699464]
  2. Cortex. 2015 Sep;70:79-89 [PMID: 25725510]
  3. Psychol Bull. 1987 Jan;101(1):91-119 [PMID: 3562705]
  4. J Neurosci. 2015 Feb 18;35(7):2904-13 [PMID: 25698730]
  5. Front Psychol. 2015 Feb 13;6:112 [PMID: 25762952]
  6. Nature. 2008 Nov 13;456(7219):245-9 [PMID: 19005555]
  7. J Autism Dev Disord. 2004 Apr;34(2):163-75 [PMID: 15162935]
  8. Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):E5638-46 [PMID: 26417092]
  9. Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17320-5 [PMID: 25404350]
  10. Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15623-8 [PMID: 17030808]
  11. Proc Natl Acad Sci U S A. 2015 Jun 23;112(25):7851-6 [PMID: 26056280]
  12. Science. 2009 May 15;324(5929):900 [PMID: 19443777]
  13. J Neurosci. 2012 May 30;32(22):7646-50 [PMID: 22649243]
  14. Science. 2009 May 15;324(5929):948-50 [PMID: 19443783]
  15. Neuron. 2013 Oct 16;80(2):519-30 [PMID: 24139048]
  16. J Neurosci. 2015 Jun 10;35(23):8938-47 [PMID: 26063925]
  17. Hum Brain Mapp. 2014 Aug;35(8):3738-49 [PMID: 24382784]
  18. Curr Opin Neurobiol. 2004 Dec;14(6):784-90 [PMID: 15582384]
  19. Curr Biol. 2013 May 20;23(10):901-5 [PMID: 23643836]
  20. Front Neurosci. 2013 Aug 21;7:147 [PMID: 23970850]
  21. Behav Cogn Neurosci Rev. 2004 Jun;3(2):71-100 [PMID: 15537986]
  22. Nat Rev Neurol. 2016 Jan;12(1):28-39 [PMID: 26670297]
  23. Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):20084-9 [PMID: 18056800]
  24. Annu Rev Psychol. 2000;51:665-97 [PMID: 10751984]
  25. Cereb Cortex. 1998 Jun;8(4):321-45 [PMID: 9651129]
  26. J Neurosci. 1995 Jul;15(7 Pt 1):4851-67 [PMID: 7623116]
  27. Trends Neurosci. 2016 Jan;39(1):40-8 [PMID: 26688301]
  28. PLoS One. 2014 May 08;9(5):e96555 [PMID: 24810604]
  29. Neuroimage. 2015 Jul 15;115:177-90 [PMID: 25937490]
  30. Behav Brain Res. 2016 Sep 15;311:255-66 [PMID: 27235714]
  31. Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5391-6 [PMID: 24706828]
  32. Proc Natl Acad Sci U S A. 2011 Jun 28;108 Suppl 2:10910-7 [PMID: 21690372]
  33. Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16634-9 [PMID: 24062436]
  34. Proc Natl Acad Sci U S A. 2007 May 29;104(22):9493-8 [PMID: 17519340]
  35. Neurosci Lett. 2009 Jun 26;457(2):107-10 [PMID: 19429173]
  36. J Neurosci. 2015 Oct 7;35(40):13720-7 [PMID: 26446224]
  37. J Neurosci. 2009 Jan 28;29(4):1175-90 [PMID: 19176826]
  38. Nat Neurosci. 2013 Feb;16(2):243-50 [PMID: 23263442]
  39. Neuroimage. 2008 Aug 1;42(1):393-403 [PMID: 18514546]
  40. Dev Neurosci. 2010;32(4):257-67 [PMID: 20805682]
  41. Nat Neurosci. 2001 Oct;4(10):1043-8 [PMID: 11559855]
  42. Annu Rev Neurosci. 2012;35:1-23 [PMID: 22715878]
  43. Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14431-6 [PMID: 20660717]
  44. J Neurosci. 2013 Jul 24;33(30):12255-74 [PMID: 23884933]
  45. Nature. 2003 Oct 23;425(6960):785-91 [PMID: 14574401]
  46. J Comp Neurol. 1994 Jul 22;345(4):562-78 [PMID: 7962700]
  47. Nat Rev Neurosci. 2014 Aug;15(8):549-62 [PMID: 24986556]
  48. Neuron. 2012 Jun 21;74(6):1125-37 [PMID: 22726841]
  49. Trends Cogn Sci. 2006 Oct;10(10):435-41 [PMID: 16949331]
  50. Neuroimage. 2015 May 15;112:244-53 [PMID: 25554428]
  51. Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):15516-21 [PMID: 26621711]
  52. Ann N Y Acad Sci. 2009 Mar;1156:81-96 [PMID: 19338504]
  53. Curr Opin Neurobiol. 2008 Apr;18(2):159-65 [PMID: 18639633]
  54. J Neurosci. 2014 Apr 30;34(18):6190-200 [PMID: 24790190]
  55. J Pers Assess. 2011 Jan;93(1):84-95 [PMID: 21184334]
  56. Annu Rev Psychol. 2011;62:23-48 [PMID: 20822437]
  57. Neuroimage. 2011 Feb 1;54(3):2492-502 [PMID: 20946964]
  58. Dev Sci. 2009 Jan;12(1):165-74 [PMID: 19120424]
  59. J Consult Clin Psychol. 1969 Jun;33(3):307-16 [PMID: 4389335]
  60. Neuroimage. 2005 Jul 1;26(3):839-51 [PMID: 15955494]
  61. Cognition. 2013 Mar;126(3):364-72 [PMID: 23280149]
  62. Neuroimage. 2008 Sep 1;42(3):1127-41 [PMID: 18585468]
  63. Neuron. 2016 May 18;90(4):692-707 [PMID: 27196973]
  64. Science. 2007 Jun 15;316(5831):1622-5 [PMID: 17569866]
  65. Front Hum Neurosci. 2013 Nov 13;7:760 [PMID: 24294197]
  66. J Pers. 1972 Dec;40(4):525-43 [PMID: 4642390]
  67. Neuroimage. 2011 Jan 15;54(2):1735-42 [PMID: 20728544]
  68. J Neurosci. 2016 Jan 27;36(4):1096-112 [PMID: 26818500]
  69. Conscious Cogn. 2005 Dec;14(4):698-718 [PMID: 16157488]
  70. Neurosci Biobehav Rev. 2009 Mar;33(3):456-65 [PMID: 19126412]
  71. J Comp Neurol. 1991 Oct 1;312(1):43-67 [PMID: 1744243]
  72. Trends Cogn Sci. 2012 Jan;16(1):52-60 [PMID: 22177031]
  73. Curr Opin Neurobiol. 2013 Apr;23(2):229-38 [PMID: 23267662]
  74. Neuroimage. 2005 Apr 15;25(3):653-60 [PMID: 15808966]
  75. Ann N Y Acad Sci. 2011 Aug;1231:35-45 [PMID: 21651564]
  76. Neuroimage. 2003 Jun;19(2 Pt 1):430-41 [PMID: 12814592]
  77. Neurosci Biobehav Rev. 2014 Nov;47:520-32 [PMID: 25454356]

MeSH Term

Adult
Altruism
Basal Forebrain
Brain Mapping
Choice Behavior
Empathy
Gyrus Cinguli
Humans
Magnetic Resonance Imaging
Male
Nerve Net
Reinforcement, Psychology
Reward

Word Cloud

Created with Highcharts 10.0.0prosociallearningtheorylearnempathypeopleothersbehaviorrewardspredictionpredictedHoweversocialfMRIcomputationalobtainsubgenualanteriorcingulatesgACCreinforcementReinforcementpowerfullycharacterizesbenefiterrors-thedifferenceactualoutcomechoice-driveoperatevacuumbehaveprosociallymustconsequencesactionsEmpathyabilityvicariouslyexperienceunderstandaffecthypothesizedcriticalfacilitatorbehaviorslinkstillunclearfunctionalmagneticresonanceimagingparticipantschosedifferentstimuliprobabilisticallyassociatedselfanotherpersononecontrolUsingmodelingshowcanslowlyrevealedactivityposteriorportioncortex/basalforebraindrivesactingcontextsignalserrorconformingclassicalprinciplesalsosubstantialvariabilityneuralbehavioralefficiencytraitempathicquicklybenefittingresponseselectivethusrevealmechanismdrivinghumansframeworkprovideinsightsatypicaldisorderscognitionNeurocomputationalmechanismslinksrewardcortex

Similar Articles

Cited By (89)