Additive Effects of Millimeter Waves and 2-Deoxyglucose Co-Exposure on the Human Keratinocyte Transcriptome.

Yonis Soubere Mahamoud, Meziane Aite, Catherine Martin, Maxim Zhadobov, Ronan Sauleau, Yves Le Dréan, Denis Habauzit
Author Information
  1. Yonis Soubere Mahamoud: Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), Transcription, Environment and Cancer group (TREC), Rennes, France.
  2. Meziane Aite: Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), Transcription, Environment and Cancer group (TREC), Rennes, France.
  3. Catherine Martin: Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), Transcription, Environment and Cancer group (TREC), Rennes, France.
  4. Maxim Zhadobov: University of Rennes 1, Rennes, France.
  5. Ronan Sauleau: University of Rennes 1, Rennes, France.
  6. Yves Le Dréan: Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), Transcription, Environment and Cancer group (TREC), Rennes, France.
  7. Denis Habauzit: Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), Transcription, Environment and Cancer group (TREC), Rennes, France. ORCID

Abstract

Millimeter Waves (MMW) will be used in the next-generation of high-speed wireless technologies, especially in future Ultra-Broadband small cells in 5G cellular networks. Therefore, their biocompatibilities must be evaluated prior to their massive deployment. Using a microarray-based approach, we analyzed modifications to the whole genome of a human keratinocyte model that was exposed at 60.4 GHz-MMW at an incident power density (IPD) of 20 mW/cm2 for 3 hours in athermic conditions. No keratinocyte transcriptome modifications were observed. We tested the effects of MMWs on cell metabolism by co-treating MMW-exposed cells with a glycolysis inhibitor, 2-deoxyglucose (2dG, 20 mM for 3 hours), and whole genome expression was evaluated along with the ATP content. We found that the 2dG treatment decreased the cellular ATP content and induced a high modification in the transcriptome (632 coding genes). The affected genes were associated with transcriptional repression, cellular communication and endoplasmic reticulum homeostasis. The MMW/2dG co-treatment did not alter the keratinocyte ATP content, but it did slightly alter the transcriptome, which reflected the capacity of MMW to interfere with the bioenergetic stress response. The RT-PCR-based validation confirmed 6 MMW-sensitive genes (SOCS3, SPRY2, TRIB1, FAM46A, CSRNP1 and PPP1R15A) during the 2dG treatment. These 6 genes encoded transcription factors or inhibitors of cytokine pathways, which raised questions regarding the potential impact of long-term or chronic MMW exposure on metabolically stressed cells.

References

  1. J Allergy Clin Immunol. 2014 Jan;133(1):217-24.e1-3 [PMID: 23768573]
  2. Science. 1956 Feb 24;123(3191):309-14 [PMID: 13298683]
  3. Science. 1956 Aug 10;124(3215):269-70 [PMID: 13351639]
  4. Int J Radiat Oncol Biol Phys. 2007 Nov 15;69(4):1222-30 [PMID: 17967311]
  5. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W77-83 [PMID: 23703215]
  6. Int J Radiat Biol. 2010 Jan;86(1):27-36 [PMID: 20070213]
  7. Bioelectromagnetics. 2008 May;29(4):284-95 [PMID: 18064600]
  8. Bioelectromagnetics. 2014 Sep;35(6):444-51 [PMID: 25099539]
  9. Acta Biochim Biophys Sin (Shanghai). 2014 Aug;46(8):629-40 [PMID: 25016584]
  10. Endocr Rev. 2000 Oct;21(5):457-87 [PMID: 11041445]
  11. QJM. 1998 Jan;91(1):57-66 [PMID: 9519213]
  12. Bioelectromagnetics. 2006 Sep;27(6):458-66 [PMID: 16622862]
  13. Am J Physiol Cell Physiol. 2007 Jan;292(1):C125-36 [PMID: 16971499]
  14. Blood. 2009 Mar 12;113(11):2478-87 [PMID: 19147787]
  15. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8800-4 [PMID: 3194391]
  16. Anal Biochem. 1999 May 15;270(1):41-9 [PMID: 10328763]
  17. J Neuroinflammation. 2010 Sep 09;7:54 [PMID: 20828402]
  18. Radiother Oncol. 2013 Sep;108(3):541-7 [PMID: 23830192]
  19. Int J Radiat Biol. 2008 May;84(5):413-20 [PMID: 18464070]
  20. Bioelectromagnetics. 2008 Jan;29(1):65-70 [PMID: 17929264]
  21. Am J Physiol Endocrinol Metab. 2011 Sep;301(3):E484-93 [PMID: 21673307]
  22. J Cell Physiol. 2005 Aug;204(2):539-48 [PMID: 15754340]
  23. Bioelectromagnetics. 2009 Sep;30(6):454-61 [PMID: 19431156]
  24. Bioelectromagnetics. 2012 Jan;33(1):55-64 [PMID: 21713963]
  25. Leukemia. 2008 Jul;22(7):1368-76 [PMID: 18480837]
  26. Mol Immunol. 2008 Sep;45(15):4020-7 [PMID: 18657861]
  27. Nature. 2014 Jun 12;510(7504):268-72 [PMID: 24776803]
  28. J Steroid Biochem Mol Biol. 2013 Sep;137:107-23 [PMID: 23435015]
  29. Exp Dermatol. 2006 Dec;15(12):991-1004 [PMID: 17083366]
  30. Health Phys. 1998 Apr;74(4):494-522 [PMID: 9525427]
  31. Immunopharmacol Immunotoxicol. 2012 Feb;34(1):107-12 [PMID: 21649551]
  32. J Cancer Res Ther. 2009 Sep;5 Suppl 1:S2-6 [PMID: 20009288]
  33. Methods Enzymol. 2011;491:327-41 [PMID: 21329808]
  34. Zhonghua Fu Chan Ke Za Zhi. 2008 May;43(5):356-60 [PMID: 18953869]
  35. Evid Based Complement Alternat Med. 2006 Jun;3(2):201-7 [PMID: 16786049]
  36. PLoS One. 2014 Oct 10;9(10):e109435 [PMID: 25302706]
  37. Oncogene. 2006 Aug 7;25(34):4633-46 [PMID: 16892078]
  38. Cancer Res. 2004 Jan 1;64(1):31-4 [PMID: 14729604]
  39. Biochem Biophys Res Commun. 1997 Jan 3;230(1):94-9 [PMID: 9020069]
  40. Science. 2009 May 22;324(5930):1029-33 [PMID: 19460998]
  41. Anticancer Res. 2006 Sep-Oct;26(5A):3561-6 [PMID: 17094483]
  42. J Biol Chem. 2009 Aug 28;284(35):23225-33 [PMID: 19574224]
  43. FEBS Lett. 2013 Jul 11;587(14):2241-6 [PMID: 23735697]
  44. IARC Monogr Eval Carcinog Risks Hum. 2013;102(Pt 2):1-460 [PMID: 24772662]
  45. Cancer Res. 2009 May 15;69(10 ):4225-34 [PMID: 19435925]
  46. PLoS One. 2014 Oct 02;9(9):e108318 [PMID: 25275372]
  47. Breast Cancer Res Treat. 2014 Jun;145(2):349-58 [PMID: 24781973]

MeSH Term

Adenosine Triphosphate
Cell Line
Deoxyglucose
Humans
Intracellular Space
Keratinocytes
Radio Waves
Transcriptome

Chemicals

Adenosine Triphosphate
Deoxyglucose

Word Cloud

Created with Highcharts 10.0.0genesMMWcellscellularkeratinocytetranscriptome2dGATPcontentMillimeterWavesevaluatedmodificationswholegenome203hourstreatmentalter6willusednext-generationhigh-speedwirelesstechnologiesespeciallyfutureUltra-Broadbandsmall5GnetworksThereforebiocompatibilitiesmustpriormassivedeploymentUsingmicroarray-basedapproachanalyzedhumanmodelexposed604GHz-MMWincidentpowerdensityIPDmW/cm2athermicconditionsobservedtestedeffectsMMWscellmetabolismco-treatingMMW-exposedglycolysisinhibitor2-deoxyglucosemMexpressionalongfounddecreasedinducedhighmodification632codingaffectedassociatedtranscriptionalrepressioncommunicationendoplasmicreticulumhomeostasisMMW/2dGco-treatmentslightlyreflectedcapacityinterferebioenergeticstressresponseRT-PCR-basedvalidationconfirmedMMW-sensitiveSOCS3SPRY2TRIB1FAM46ACSRNP1PPP1R15Aencodedtranscriptionfactorsinhibitorscytokinepathwaysraisedquestionsregardingpotentialimpactlong-termchronicexposuremetabolicallystressedAdditiveEffects2-DeoxyglucoseCo-ExposureHumanKeratinocyteTranscriptome

Similar Articles

Cited By