Novel carbon-fiber microelectrode batch fabrication using a 3D-printed mold and polyimide resin.

Elefterios Trikantzopoulos, Cheng Yang, Mallikarjunarao Ganesana, Ying Wang, B Jill Venton
Author Information
  1. Elefterios Trikantzopoulos: Department of Chemistry, University of Virginia, Charlottesville, VA 22904.
  2. Cheng Yang: Department of Chemistry, University of Virginia, Charlottesville, VA 22904.
  3. Mallikarjunarao Ganesana: Department of Chemistry, University of Virginia, Charlottesville, VA 22904.
  4. Ying Wang: Department of Chemistry, University of Virginia, Charlottesville, VA 22904.
  5. B Jill Venton: Department of Chemistry, University of Virginia, Charlottesville, VA 22904.

Abstract

Glass insulated carbon-fiber microelectrodes (CFMEs) are standard tools for the measurement of neurotransmitters. However, electrodes are fabricated individually and the glass can shatter, limiting application in higher order mammals. Here, we developed a novel microelectrode batch fabrication method using a 3D-printed mold and polyimide resin insulating agent. The 3D-printed mold is low cost, customizable to change the electrode shape, and allows 40 electrodes to be made simultaneously. The polyimide resin is biocompatible, quick to cure, and does not adhere to the plastic mold. The electrodes were tested for the response to dopamine with fast-scan cyclic voltammetry both in vitro and in vivo and performed similarly to traditional glass-insulated electrodes, but with lower background currents. Thus, polyimide-insulated electrodes can be mass-produced using a 3D-printed mold and are an attractive alternative for making cheap, biocompatible microelectrodes.

References

  1. Anal Chem. 2001 Nov 1;73(21):5346-51 [PMID: 11721940]
  2. Clin Chem. 2003 Oct;49(10):1763-73 [PMID: 14500617]
  3. PLoS One. 2015 Oct 27;10(10):e0141340 [PMID: 26505195]
  4. Front Neural Circuits. 2013 Oct 11;7:152 [PMID: 24130517]
  5. Anal Chem. 1996 Sep 15;68(18):3180-6 [PMID: 8797378]
  6. Nat Chem. 2012 Apr 15;4(5):349-54 [PMID: 22522253]
  7. IEEE Trans Biomed Eng. 2007 Feb;54(2):281-90 [PMID: 17278585]
  8. Sens Actuators B Chem. 2013 Jun;182:652-658 [PMID: 33927480]
  9. Electrophoresis. 2001 Jan;22(2):242-8 [PMID: 11288891]
  10. Int J Comput Assist Radiol Surg. 2010 Jul;5(4):335-41 [PMID: 20467825]
  11. J Peripher Nerv Syst. 2005 Sep;10(3):229-58 [PMID: 16221284]
  12. IEEE Trans Biomed Eng. 2001 Mar;48(3):361-71 [PMID: 11327505]
  13. Nat Methods. 2010 Feb;7(2):126-9 [PMID: 20037591]
  14. Biosens Bioelectron. 2010 Jan 15;25(5):1179-85 [PMID: 19896822]
  15. J Biol Eng. 2015 Mar 01;9:4 [PMID: 25866560]
  16. PLoS One. 2011;6(8):e23291 [PMID: 21829726]
  17. Anal Chem. 2011 May 1;83(9):3563-71 [PMID: 21473572]
  18. Analyst. 2009 Jan;134(1):18-24 [PMID: 19082168]
  19. Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10023-8 [PMID: 16006505]

Grants

  1. R01 NS076875/NINDS NIH HHS
  2. R21 DA037584/NIDA NIH HHS

MeSH Term

Animals
Carbon
Dopamine
Male
Microelectrodes
Rats
Rats, Sprague-Dawley
Resins, Synthetic

Chemicals

Resins, Synthetic
polyimide resin
Carbon
Dopamine

Word Cloud

Created with Highcharts 10.0.0electrodesmold3D-printedusingpolyimideresincarbon-fibermicroelectrodescanmicroelectrodebatchfabricationbiocompatibleGlassinsulatedCFMEsstandardtoolsmeasurementneurotransmittersHoweverfabricatedindividuallyglassshatterlimitingapplicationhigherordermammalsdevelopednovelmethodinsulatingagentlowcostcustomizablechangeelectrodeshapeallows40madesimultaneouslyquickcureadhereplastictestedresponsedopaminefast-scancyclicvoltammetryvitrovivoperformedsimilarlytraditionalglass-insulatedlowerbackgroundcurrentsThuspolyimide-insulatedmass-producedattractivealternativemakingcheapNovel

Similar Articles

Cited By