The drosomycin multigene family: three-disulfide variants from Drosophila takahashii possess antibacterial activity.

Bin Gao, Shunyi Zhu
Author Information
  1. Bin Gao: Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China.
  2. Shunyi Zhu: Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China.

Abstract

drosomycin (DRS) is a strictly antifungal peptide in Drosophila melanogaster, which contains four disulfide bridges (DBs) with three buried in molecular interior and one exposed on molecular surface to tie the amino- and carboxyl-termini of the molecule together (called wrapper disulfide bridge, WDB). Based on computational analysis of genomes of Drosophila species belonging to the Oriental lineage, we identified a new multigene family of DRS in Drosphila takahashii that includes a total of 11 DRS-encoding genes (termed DtDRS-1 to DtDRS-11) and a pseudogene. Phylogenetic tree and synteny analyses reveal orthologous relationship between DtDRSs and DRSs, indicating that orthologous genes of DRS-1, DRS-2, DRS-3 and DRS-6 have undergone duplication in D. takahashii and three amplifications (DtDRS-9 to DtDRS-11) of DRS-3 have lost WDB. Among the 11 genes, five are transcriptionally active in adult fruitflies. The ortholog of DRS (DtDRS-1) shows high structural and functional similarity to DRS while two WDB-deficient members display antibacterial activity accompanying complete loss or remarkable reduction of antifungal activity. To the best of our knowledge, this is the first report on the presence of three-disulfide antibacterial DRSs in a specific Drosophila species, suggesting a potential role of DB loss in neofunctionalization of a protein via structural adjustment.

References

  1. Nat Genet. 2007 Dec;39(12):1461-8 [PMID: 17987029]
  2. Genetics. 2005 Dec;171(4):1847-59 [PMID: 16157672]
  3. J Biol Chem. 1994 Dec 30;269(52):33159-63 [PMID: 7806546]
  4. Protein Sci. 1997 Sep;6(9):1878-84 [PMID: 9300487]
  5. Nat Commun. 2014;5:3154 [PMID: 24434635]
  6. Nature. 2007 Nov 8;450(7167):203-18 [PMID: 17994087]
  7. J Biomed Biotechnol. 2009;2009:315423 [PMID: 19888430]
  8. Int J Antimicrob Agents. 2010 Dec;36(6):579-80 [PMID: 20947309]
  9. Trends Biochem Sci. 2003 Apr;28(4):210-4 [PMID: 12713905]
  10. Biopolymers. 2008 May;89(5):392-400 [PMID: 17896349]
  11. EMBO J. 1998 Aug 10;17(5):1217-27 [PMID: 9482719]
  12. Nature. 2002 Jan 24;415(6870):389-95 [PMID: 11807545]
  13. FASEB J. 2009 Apr;23(4):1230-45 [PMID: 19088182]
  14. J Biol Chem. 2004 Feb 6;279(6):4981-7 [PMID: 14630928]
  15. FEBS Lett. 2006 Dec 22;580(30):6825-36 [PMID: 17141763]
  16. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W506-11 [PMID: 17586822]
  17. Dev Comp Immunol. 2010 Jun;34(6):659-68 [PMID: 20097222]
  18. Proteins. 1999 May 15;35(3):307-12 [PMID: 10328265]
  19. Eur J Biochem. 2001 Oct;268(20):5407-13 [PMID: 11606203]
  20. Mol Biol Evol. 2007 Feb;24(2):505-12 [PMID: 17116644]
  21. Nat Immunol. 2007 Jun;8(6):543-5 [PMID: 17514202]
  22. Insect Mol Biol. 2009 Oct;18(5):549-56 [PMID: 19754735]
  23. Mol Biol Evol. 2016 Aug;33(8):1907-20 [PMID: 27189560]
  24. Trends Genet. 2000 Oct;16(10):442-9 [PMID: 11050330]
  25. Mol Phylogenet Evol. 2006 Jun;39(3):787-98 [PMID: 16527496]
  26. Proteins. 2008 Jul;72(1):229-39 [PMID: 18214975]
  27. J Pept Res. 2002 Nov;60(5):247-56 [PMID: 12383115]
  28. Mol Biol Evol. 2011 Jan;28(1):327-34 [PMID: 20675408]
  29. J Mol Graph. 1996 Feb;14(1):51-5, 29-32 [PMID: 8744573]
  30. Nature. 2011 Jan 20;469(7330):419-23 [PMID: 21248850]
  31. Protein Expr Purif. 2007 Apr;52(2):457-62 [PMID: 17169573]
  32. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  33. Mol Biol Evol. 2011 Oct;28(10):2731-9 [PMID: 21546353]
  34. ACS Chem Biol. 2014 Feb 21;9(2):405-13 [PMID: 24228718]
  35. FEBS Lett. 1996 Oct 14;395(1):6-10 [PMID: 8849679]
  36. Cell. 1996 Sep 20;86(6):973-83 [PMID: 8808632]
  37. Proteins. 1990;8(2):164-72 [PMID: 2235994]
  38. Genet Res Int. 2014;2014:516508 [PMID: 25197576]
  39. Gene. 2001 Oct 31;278(1-2):177-84 [PMID: 11707335]
  40. Curr Opin Microbiol. 2008 Jun;11(3):284-9 [PMID: 18555739]
  41. Dev Comp Immunol. 2010 Sep;34(9):953-8 [PMID: 20420852]
  42. Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8880-5 [PMID: 12840147]
  43. Anal Biochem. 2000 Dec 15;287(2):252-60 [PMID: 11112271]
  44. Mol Immunol. 2008 Sep;45(15):3909-16 [PMID: 18657321]
  45. J Biol Chem. 2009 Aug 28;284(35):23558-63 [PMID: 19574227]
  46. Proc Natl Acad Sci U S A. 2012 May 29;109(22):8495-500 [PMID: 22586077]

MeSH Term

Animals
Anti-Bacterial Agents
Drosophila
Drosophila Proteins
Gene Duplication
Multigene Family

Chemicals

Anti-Bacterial Agents
Drosophila Proteins
DRS protein, Drosophila

Word Cloud

Created with Highcharts 10.0.0DRSDrosophilatakahashiigenesantibacterialactivityantifungaldisulfidethreemolecularWDBspeciesmultigene11DtDRS-1DtDRS-11orthologousDRSsDRS-3structurallossthree-disulfideDrosomycinstrictlypeptidemelanogastercontainsfourbridgesDBsburiedinterioroneexposedsurfacetieamino-carboxyl-terminimoleculetogethercalledwrapperbridgeBasedcomputationalanalysisgenomesbelongingOrientallineageidentifiednewfamilyDrosphilaincludestotalDRS-encodingtermedpseudogenePhylogenetictreesyntenyanalysesrevealrelationshipDtDRSsindicatingDRS-1DRS-2DRS-6undergoneduplicationDamplificationsDtDRS-9lostAmongfivetranscriptionallyactiveadultfruitfliesorthologshowshighfunctionalsimilaritytwoWDB-deficientmembersdisplayaccompanyingcompleteremarkablereductionbestknowledgefirstreportpresencespecificsuggestingpotentialroleDBneofunctionalizationproteinviaadjustmentdrosomycinfamily:variantspossess

Similar Articles

Cited By (6)