Estimation of Gene Insertion/Deletion Rates with Missing Data.

Utkarsh J Dang, Alison M Devault, Tatum D Mortimer, Caitlin S Pepperell, Hendrik N Poinar, G Brian Golding
Author Information
  1. Utkarsh J Dang: Departments of Biology and Mathematics and Statistics, McMaster University, Hamilton, Ontario L8S-4L8, Canada.
  2. Alison M Devault: MYcroarray, Ann Arbor, Michigan 48105.
  3. Tatum D Mortimer: Departments of Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705.
  4. Caitlin S Pepperell: Departments of Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705.
  5. Hendrik N Poinar: Department of Anthropology, McMaster University, Hamilton, Ontario L8S-4K1, Canada.
  6. G Brian Golding: Department of Biology, McMaster University, Hamilton, Ontario L8S-4K1, Canada golding@mcmaster.ca.

Abstract

Lateral gene transfer is an important mechanism for evolution among bacteria. Here, genome-wide gene insertion and deletion rates are modeled in a maximum-likelihood framework with the additional flexibility of modeling potential missing data. The performance of the models is illustrated using simulations and a data set on gene family phyletic patterns from Gardnerella vaginalis that includes an ancient taxon. A novel application involving pseudogenization/genome reduction magnitudes is also illustrated, using gene family data from Mycobacterium spp. Finally, an R package called indelmiss is available from the Comprehensive R Archive Network at https://cran.r-project.org/package=indelmiss, with support documentation and examples.

Keywords

References

  1. J Bacteriol. 2000 Nov;182(22):6322-30 [PMID: 11053375]
  2. Nature. 2001 Feb 22;409(6823):1007-11 [PMID: 11234002]
  3. J Mol Evol. 2001 Jun;52(6):540-2 [PMID: 11443357]
  4. Syst Biol. 2001 Nov-Dec;50(6):913-25 [PMID: 12116640]
  5. Nucleic Acids Res. 2002 Jul 15;30(14):3059-66 [PMID: 12136088]
  6. Mol Biol Evol. 2003 Jan;20(1):154-61 [PMID: 12519918]
  7. Bioinformatics. 2003 Aug 12;19(12):1572-4 [PMID: 12912839]
  8. Genome Res. 2003 Sep;13(9):2178-89 [PMID: 12952885]
  9. Bioinformatics. 2004 Jan 22;20(2):289-90 [PMID: 14734327]
  10. BMC Microbiol. 2004 Apr 21;4:16 [PMID: 15102329]
  11. Mol Biol Evol. 2004 Jul;21(7):1294-307 [PMID: 15115802]
  12. Nat Rev Microbiol. 2005 Sep;3(9):688-99 [PMID: 16138097]
  13. Genome Res. 2006 May;16(5):636-43 [PMID: 16651664]
  14. Mol Biol Evol. 2006 Dec;23(12):2379-91 [PMID: 16966682]
  15. Genome Res. 2007 Feb;17(2):192-200 [PMID: 17210928]
  16. Genome Res. 2007 Aug;17(8):1178-85 [PMID: 17623808]
  17. Bioinformatics. 2008 Feb 1;24(3):319-24 [PMID: 18042555]
  18. Emerg Infect Dis. 2007 Jul;13(7):1008-15 [PMID: 18214172]
  19. Genome Res. 2008 May;18(5):821-9 [PMID: 18349386]
  20. Clin Infect Dis. 2008 Jul 1;47(1):33-43 [PMID: 18513147]
  21. Nat Rev Microbiol. 2009 Jan;7(1):50-60 [PMID: 19079352]
  22. Mol Biol Evol. 2009 Aug;26(8):1901-8 [PMID: 19435739]
  23. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  24. Bioinformatics. 2009 Aug 1;25(15):1972-3 [PMID: 19505945]
  25. J Bacteriol. 2009 Oct;191(19):6067-74 [PMID: 19633074]
  26. Mol Biol Evol. 2010 Mar;27(3):703-13 [PMID: 19808865]
  27. Science. 2010 Oct 1;330(6000):50 [PMID: 20929803]
  28. Bioinformatics. 2011 Feb 15;27(4):592-3 [PMID: 21169378]
  29. PLoS Genet. 2011 Jan 27;7(1):e1001284 [PMID: 21298028]
  30. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  31. Science. 2013 Jul 12;341(6142):179-83 [PMID: 23765279]
  32. Nucleic Acids Res. 2014 Jan;42(Database issue):D581-91 [PMID: 24225323]
  33. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  34. PLoS Negl Trop Dis. 2014 Feb 13;8(2):e2544 [PMID: 24551248]
  35. Bioinformatics. 2014 Jul 15;30(14):2068-9 [PMID: 24642063]
  36. BMC Bioinformatics. 2014 Sep 27;15:320 [PMID: 25260628]
  37. G3 (Bethesda). 2014 Nov 04;4(12):2545-52 [PMID: 25378476]
  38. Bioinformatics. 2016 Jan 1;32(1):130-2 [PMID: 26363176]
  39. PLoS Pathog. 2015 Nov 12;11(11):e1005257 [PMID: 26562841]
  40. Evolution. 1992 Feb;46(1):159-173 [PMID: 28564959]
  41. J Mol Biol. 1981 Mar 25;147(1):195-7 [PMID: 7265238]
  42. J Mol Evol. 1981;17(6):368-76 [PMID: 7288891]
  43. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  44. Nature. 1998 Jun 11;393(6685):537-44 [PMID: 9634230]

Grants

  1. R01 AI113287/NIAID NIH HHS
  2. T32 GM007215/NIGMS NIH HHS

MeSH Term

Data Interpretation, Statistical
Evolution, Molecular
Gardnerella vaginalis
Gene Transfer, Horizontal
Genome, Bacterial
INDEL Mutation
Mutagenesis, Insertional
Mutation Rate
Mycobacterium

Word Cloud

Created with Highcharts 10.0.0genedataratesillustratedusingfamilyRLateraltransferimportantmechanismevolutionamongbacteriagenome-wideinsertiondeletionmodeledmaximum-likelihoodframeworkadditionalflexibilitymodelingpotentialmissingperformancemodelssimulationssetphyleticpatternsGardnerellavaginalisincludesancienttaxonnovelapplicationinvolvingpseudogenization/genomereductionmagnitudesalsoMycobacteriumsppFinallypackagecalledindelmissavailableComprehensiveArchiveNetworkhttps://cranr-projectorg/package=indelmisssupportdocumentationexamplesEstimationGeneInsertion/DeletionRatesMissingDatainsertion/deletionindelmaximumlikelihoodunobserved

Similar Articles

Cited By (1)