Transcriptional Differences between Diapausing and Non-Diapausing D. montana Females Reared under the Same Photoperiod and Temperature.

Maaria Kankare, Darren J Parker, Mikko Merisalo, Tiina S Salminen, Anneli Hoikkala
Author Information
  1. Maaria Kankare: Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Jyväskylä, Finland.
  2. Darren J Parker: Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Jyväskylä, Finland.
  3. Mikko Merisalo: Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Jyväskylä, Finland.
  4. Tiina S Salminen: BioMediTech, Biokatu 6, F1-33014, University of Tampere, Tampere, Finland.
  5. Anneli Hoikkala: Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Jyväskylä, Finland.

Abstract

BACKGROUND: A wide range of insects living at higher latitudes enter diapause at the end of the warm season, which increases their chances of survival through harsh winter conditions. In this study we used RNA sequencing to identify genes involved in adult reproductive diapause in a northern fly species, Drosophila montana. Both diapausing and non-diapausing flies were reared under a critical day length and temperature, where about half of the emerging females enter diapause enabling us to eliminate the effects of varying environmental conditions on gene expression patterns of the two types of female flies.
RESULTS: RNA sequencing revealed large differences between gene expression patterns of diapausing and non-diapausing females, especially in genes involved with metabolism, fatty acid biosynthesis, and metal and nucleotide binding. Differently expressed genes included several gene groups, including myosin, actin and cytochromeP450 genes, which have been previously associated with diapause. This study also identified new candidate genes, including some involved in cuticular hydrocarbon synthesis or regulation (desat1 and desat2), and acyl-CoA Δ11-desaturase activity (CG9747), and few odorant-binding protein genes (e.g. Obp44A). Also, several transposable elements (TEs) showed differential expression between the two female groups motivating future research on their roles in diapause.
CONCLUSIONS: Our results demonstrate that the adult reproductive diapause in D. montana involves changes in the expression level of a variety of genes involved in key processes (e.g. metabolism and fatty acid biosynthesis) which help diapausing females to cope with overwintering. This is consistent with the view that diapause is a complex adaptive phenotype where not only sexual maturation is arrested, but also changes in adult physiology are required in order to survive over the winter.

References

  1. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  2. Gene. 2015 Jul 1;565(1):106-15 [PMID: 25841989]
  3. Physiol Genomics. 2009 Nov 6;39(3):202-9 [PMID: 19706691]
  4. Proc Natl Acad Sci U S A. 1948 Mar;34(3):124-9 [PMID: 16578279]
  5. J Insect Physiol. 2008 Mar;54(3):636-43 [PMID: 18308331]
  6. Nature. 1976 Jul 29;262(5567):384-6 [PMID: 8725]
  7. G3 (Bethesda). 2016 May 03;6(5):1373-81 [PMID: 26976440]
  8. BMC Genomics. 2016 Jan 13;17:50 [PMID: 26758761]
  9. Insect Biochem Mol Biol. 1999 Jun;29(6):481-514 [PMID: 10406089]
  10. J Insect Physiol. 2007 Apr;53(4):392-7 [PMID: 17336324]
  11. Insect Mol Biol. 2009 Jun;18(3):295-302 [PMID: 19523062]
  12. Annu Rev Entomol. 2002;47:93-122 [PMID: 11729070]
  13. Genetica. 2004 Mar;120(1-3):195-212 [PMID: 15088658]
  14. Insect Biochem Mol Biol. 1996 Jul;26(7):697-703 [PMID: 8995791]
  15. Plant Cell Physiol. 2003 Jul;44(7):676-86 [PMID: 12881495]
  16. J Biol Chem. 2008 Nov 21;283(47):32492-9 [PMID: 18809674]
  17. BMC Genomics. 2009 May 24;10:242 [PMID: 19463195]
  18. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):196-201 [PMID: 8990185]
  19. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  20. J Insect Physiol. 2007 Aug;53(8):760-73 [PMID: 17532002]
  21. Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14509-11 [PMID: 11698659]
  22. Insect Mol Biol. 2012 Feb;21(1):107-18 [PMID: 22122733]
  23. J Insect Physiol. 1999 Feb;45(2):167-172 [PMID: 12770385]
  24. Mol Biol Evol. 2004 Jan;21(1):36-44 [PMID: 12949132]
  25. J Insect Physiol. 2010 Nov;56(11):1558-64 [PMID: 20546744]
  26. J Insect Physiol. 2011 May;57(5):538-56 [PMID: 21029738]
  27. J Insect Physiol. 2006 Nov-Dec;52(11-12):1226-33 [PMID: 17078965]
  28. BMC Ecol. 2010 Feb 01;10:3 [PMID: 20122138]
  29. Fly (Austin). 2009 Jan-Mar;3(1):29-38 [PMID: 19182541]
  30. PLoS One. 2014 Nov 13;9(11):e113051 [PMID: 25393614]
  31. BMC Genomics. 2014 Nov 27;15:1031 [PMID: 25431190]
  32. Insect Biochem Mol Biol. 2000 Jun;30(6):515-21 [PMID: 10802243]
  33. J Insect Physiol. 2009 Jan;55(1):40-6 [PMID: 18992753]
  34. J Biol Rhythms. 2012 Oct;27(5):377-87 [PMID: 23010660]
  35. J Insect Physiol. 2007 Mar;53(3):235-45 [PMID: 17098250]
  36. J Exp Biol. 2012 Aug 15;215(Pt 16):2891-7 [PMID: 22837463]
  37. PLoS One. 2015 Sep 23;10(9):e0138758 [PMID: 26398836]
  38. J Med Entomol. 1992 Sep;29(5):843-9 [PMID: 1404264]
  39. Sci Rep. 2015 Jun 11;5:11197 [PMID: 26063442]
  40. Annu Rev Entomol. 2011;56:103-21 [PMID: 20690828]
  41. Insect Biochem Mol Biol. 2003 Jul;33(7):701-8 [PMID: 12826097]
  42. Insect Biochem Mol Biol. 1998 Sep;28(9):677-82 [PMID: 9755478]
  43. J Biol Rhythms. 1986 Summer;1(2):101-18 [PMID: 2979577]
  44. Bioinformatics. 2010 Mar 15;26(6):849-50 [PMID: 20207696]
  45. Proc Natl Acad Sci U S A. 1989 May;86(10):3748-52 [PMID: 2498875]
  46. Autophagy. 2009 Oct;5(7):980-90 [PMID: 19587536]
  47. Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16207-11 [PMID: 18852464]
  48. Genome Biol. 2010;11(10):R106 [PMID: 20979621]
  49. Biol Rev Camb Philos Soc. 1999 Feb;74(1):1-40 [PMID: 10396183]
  50. J Insect Physiol. 2013 Apr;59(4):450-7 [PMID: 23428942]
  51. Insect Mol Biol. 2008 Aug;17(4):325-39 [PMID: 18651915]
  52. Bioinformatics. 2005 Sep 15;21(18):3674-6 [PMID: 16081474]
  53. Annu Rev Entomol. 2010;55:207-25 [PMID: 19725772]
  54. Brief Funct Genomics. 2012 Sep;11(5):395-404 [PMID: 22843979]
  55. Sci Rep. 2015 Jun 19;5:11402 [PMID: 26091374]
  56. Mol Phylogenet Evol. 2011 Aug;60(2):249-58 [PMID: 21571080]
  57. J Insect Physiol. 2013 Aug;59(8):745-51 [PMID: 23702203]
  58. J Exp Biol. 2009 Jul;212(Pt 13):2075-84 [PMID: 19525434]
  59. Ecol Evol. 2011 Oct;1(2):160-8 [PMID: 22393492]
  60. J Insect Physiol. 2006 Feb;52(2):113-27 [PMID: 16332347]
  61. Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11130-7 [PMID: 17522254]
  62. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  63. Cell Mol Life Sci. 2010 Jul;67(14):2405-24 [PMID: 20213274]
  64. Science. 2003 Dec 5;302(5651):1754-7 [PMID: 14657496]
  65. Curr Biol. 2002 Apr 30;12(9):712-23 [PMID: 12007414]
  66. Proc Biol Sci. 2001 Dec 22;268(1485):2509-14 [PMID: 11749703]
  67. J Insect Physiol. 2011 Jan;57(1):46-51 [PMID: 20932841]
  68. Evolution. 2008 May;62(5):1204-15 [PMID: 18298646]
  69. Trends Genet. 2009 May;25(5):217-25 [PMID: 19375812]
  70. J Exp Biol. 2011 Dec 1;214(Pt 23):4021-9 [PMID: 22071194]
  71. Evolution. 2005 Dec;59(12):2616-25 [PMID: 16526509]
  72. Am Nat. 2001 Sep;158(3):248-58 [PMID: 18707322]
  73. FASEB J. 2001 Jul;15(9):1569-74 [PMID: 11427489]

MeSH Term

Actins
Animals
Cytochrome P-450 Enzyme System
Diapause, Insect
Drosophila
Drosophila Proteins
Female
Metamorphosis, Biological
Myosins
Photoperiod
Reproduction
Temperature

Chemicals

Actins
Drosophila Proteins
Cytochrome P-450 Enzyme System
Myosins

Word Cloud

Created with Highcharts 10.0.0diapausegenesinvolvedexpressionadultmontanadiapausingfemalesgeneenterwinterconditionsstudyRNAsequencingreproductivenon-diapausingfliespatternstwofemalemetabolismfattyacidbiosynthesisseveralgroupsincludingalsoegDchangesBACKGROUND:widerangeinsectslivinghigherlatitudesendwarmseasonincreaseschancessurvivalharshusedidentifynorthernflyspeciesDrosophilarearedcriticaldaylengthtemperaturehalfemergingenablinguseliminateeffectsvaryingenvironmentaltypesRESULTS:revealedlargedifferencesespeciallymetalnucleotidebindingDifferentlyexpressedincludedmyosinactincytochromeP450previouslyassociatedidentifiednewcandidatecuticularhydrocarbonsynthesisregulationdesat1desat2acyl-CoAΔ11-desaturaseactivityCG9747odorant-bindingproteinObp44AAlsotransposableelementsTEsshoweddifferentialmotivatingfutureresearchrolesCONCLUSIONS:resultsdemonstrateinvolveslevelvarietykeyprocesseshelpcopeoverwinteringconsistentviewcomplexadaptivephenotypesexualmaturationarrestedphysiologyrequiredordersurviveTranscriptionalDifferencesDiapausingNon-DiapausingFemalesRearedPhotoperiodTemperature

Similar Articles

Cited By