Sex differences in contaminant concentrations of fish: a synthesis.

Charles P Madenjian, Richard R Rediske, David P Krabbenhoft, Martin A Stapanian, Sergei M Chernyak, James P O'Keefe
Author Information
  1. Charles P Madenjian: U. S. Geological Survey, Great Lakes Science Center, 1451 Green Road, Ann Arbor, MI 48105 USA.
  2. Richard R Rediske: Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI 49441 USA.
  3. David P Krabbenhoft: U. S. Geological Survey, Wisconsin Water Science Center, 8505 Research Way, Middleton, WI 53562 USA.
  4. Martin A Stapanian: U. S. Geological Survey, Great Lakes Science Center, Lake Erie Biological Station, 6100 Columbus Avenue, Sandusky, OH 44870 USA.
  5. Sergei M Chernyak: University of Michigan, School of Public Health, 1420 Washington Heights, Ann Arbor, MI 48109 USA.
  6. James P O'Keefe: Bureau of Laboratories, Michigan Department of Health and Human Services, 3350 North Martin Luther King Jr. Boulevard, Lansing, MI 48906 USA.

Abstract

A comparison of whole-fish polychlorinated biphenyl (PCB) and total mercury (Hg) concentrations in mature males with those in mature females may provide insights into sex differences in behavior, metabolism, and other physiological processes. In eight species of fish, we observed that males exceeded females in whole-fish PCB concentration by 17 to 43 %. Based on results from hypothesis testing, we concluded that these sex differences were most likely primarily driven by a higher rate of energy expenditure, stemming from higher resting metabolic rate (or standard metabolic rate (SMR)) and higher swimming activity, in males compared with females. A higher rate of energy expenditure led to a higher rate of food consumption, which, in turn, resulted in a higher rate of PCB accumulation. For two fish species, the growth dilution effect also made a substantial contribution to the sex difference in PCB concentrations, although the higher energy expenditure rate for males was still the primary driver. Hg concentration data were available for five of the eight species. For four of these five species, the ratio of PCB concentration in males to PCB concentration in females was substantially greater than the ratio of Hg concentration in males to Hg concentration in females. In sea lamprey (Petromyzon marinus), a very primitive fish, the two ratios were nearly identical. The most plausible explanation for this pattern was that certain androgens, such as testosterone and 11-ketotestosterone, enhanced Hg-elimination rate in males. In contrast, long-term elimination of PCBs is negligible for both sexes. According to this explanation, males not only ingest Hg at a higher rate than females but also eliminate Hg at a higher rate than females, in fish species other than sea lamprey. Male sea lamprey do not possess either of the above-specified androgens. These apparent sex differences in SMRs, activities, and Hg-elimination rates in teleost fishes may also apply, to some degree, to higher vertebrates including humans. Our synthesis findings will be useful in (1) developing sex-specific bioenergetics models for fish, (2) developing sex-specific risk assessment models for exposure of humans and wildlife to contaminants, and (3) refining Hg mass balance models for fish and higher vertebrates.

Keywords

References

  1. Environ Res. 2007 May;104(1):4-21 [PMID: 16616135]
  2. Chemosphere. 2011 May;83(7):903-8 [PMID: 21429556]
  3. Comp Biochem Physiol B. 1974 Aug 15;48(4):641-9 [PMID: 4842819]
  4. Proc Biol Sci. 2002 Dec 7;269(1508):2487-93 [PMID: 12495493]
  5. Horm Behav. 2005 Apr;47(4):389-409 [PMID: 15777805]
  6. Environ Toxicol Chem. 2014 Nov;33(11):2448-54 [PMID: 25088677]
  7. J Clin Endocrinol Metab. 2007 Feb;92(2):405-13 [PMID: 17090633]
  8. Environ Sci Technol. 2007 Aug 15;41(16):5895-901 [PMID: 17874803]
  9. Environ Res. 2007 May;104(1):153-62 [PMID: 17045984]
  10. Sci Total Environ. 2014 Feb 1;470-471:1313-9 [PMID: 24275530]
  11. Med Sci Sports Exerc. 2000 May;32(5):963-75 [PMID: 10795788]
  12. Biol Direct. 2015 Sep 14;10:49 [PMID: 26370226]
  13. Chemosphere. 2007 Aug;68(9):1707-15 [PMID: 17490714]
  14. Med Sci Sports Exerc. 2014 Jul;46(7):1352-8 [PMID: 24300125]
  15. Arch Environ Contam Toxicol. 2015 May;68(4):678-88 [PMID: 25628029]
  16. Environ Res. 2007 May;104(1):70-84 [PMID: 17098226]
  17. J Toxicol Environ Health A. 2001 May 11;63(1):19-52 [PMID: 11346132]
  18. Sci Total Environ. 2009 Jul 15;407(15):4526-32 [PMID: 19446308]
  19. PLoS One. 2014 Dec 15;9(12):e114833 [PMID: 25506913]
  20. Steroids. 2008 Jan;73(1):1-12 [PMID: 17931674]
  21. J Exp Biol. 2013 Apr 1;216(Pt 7):1255-64 [PMID: 23197088]
  22. Arch Environ Contam Toxicol. 2013 Nov;65(4):693-703 [PMID: 23864162]
  23. Toxicology. 1991;69(3):317-29 [PMID: 1683032]
  24. Environ Sci Technol. 2013 May 7;47(9):4147-54 [PMID: 23566175]
  25. PLoS One. 2016 Jan 21;11(1):e0147223 [PMID: 26794728]
  26. Sci Total Environ. 2010 Mar 1;408(7):1725-30 [PMID: 20067852]
  27. Environ Int. 2011 Feb;37(2):425-34 [PMID: 21168218]
  28. Bull Environ Contam Toxicol. 2008 Dec;81(6):566-70 [PMID: 18787747]
  29. Toxicol Appl Pharmacol. 1992 Jan;112(1):58-63 [PMID: 1346343]
  30. Sci Total Environ. 2014 Sep 15;493:377-83 [PMID: 24954559]
  31. Arch Environ Contam Toxicol. 2007 Jan;52(1):80-9 [PMID: 17106790]
  32. Arch Environ Contam Toxicol. 2012 Aug;63(2):262-9 [PMID: 22552852]
  33. Chemosphere. 2013 Nov;93(8):1615-23 [PMID: 24001671]
  34. J Anim Ecol. 2012 Jan;81(1):296-305 [PMID: 21958300]
  35. Sci Total Environ. 2009 Dec 20;408(2):304-11 [PMID: 19875155]
  36. Toxicol Lett. 1980 Oct;6(6):405-10 [PMID: 7444980]
  37. Sci Total Environ. 2010 Mar 1;408(7):1719-24 [PMID: 20074778]
  38. Arch Environ Contam Toxicol. 2014 May;66(4):529-37 [PMID: 24633047]
  39. Environ Sci Technol. 2002 Oct 15;36(20):4238-44 [PMID: 12387393]
  40. Bioessays. 2007 Feb;29(2):133-44 [PMID: 17226801]
  41. Arch Environ Contam Toxicol. 2005 Aug;49(2):223-31 [PMID: 16001148]
  42. Arch Toxicol. 1989;63(6):479-83 [PMID: 2575893]
  43. Ecotoxicol Environ Saf. 2015 Jul;117:174-86 [PMID: 25900434]
  44. J Comp Physiol B. 2000 Dec;170(8):633-41 [PMID: 11192269]
  45. Arch Environ Contam Toxicol. 2013 Aug;65(2):300-8 [PMID: 23591764]
  46. Environ Res. 2016 Jan;144(Pt A):73-80 [PMID: 26580025]
  47. J Toxicol Environ Health. 1986;18(1):49-60 [PMID: 3701881]
  48. Bull Environ Contam Toxicol. 2014 Aug;93(2):144-8 [PMID: 24667854]

Grants

  1. P30 ES017885/NIEHS NIH HHS

Word Cloud

Created with Highcharts 10.0.0higherratemalesHgfemalesPCBfishconcentrationspeciessexdifferencesmodelsconcentrationsenergyexpenditurealsosealampreyHg-eliminationwhole-fishmaturemayeightmetabolictwogrowthfiveratioexplanationandrogensratesfishesvertebrateshumanssynthesisdevelopingsex-specificcomparisonpolychlorinatedbiphenyltotalmercuryprovideinsightsbehaviormetabolismphysiologicalprocessesobservedexceeded1743 %BasedresultshypothesistestingconcludedlikelyprimarilydrivenstemmingrestingstandardSMRswimmingactivitycomparedledfoodconsumptionturnresultedaccumulationdilutioneffectmadesubstantialcontributiondifferencealthoughstillprimarydriverdataavailablefoursubstantiallygreaterPetromyzonmarinusprimitiveratiosnearlyidenticalplausiblepatterncertaintestosterone11-ketotestosteroneenhancedcontrastlong-termeliminationPCBsnegligiblesexesAccordingingesteliminateMalepossesseitherabove-specifiedapparentSMRsactivitiesteleostapplydegreeincludingfindingswilluseful1bioenergetics2riskassessmentexposurewildlifecontaminants3refiningmassbalanceSexcontaminantfish:AndrogensBioenergeticsGonadosomaticindexGrossefficiencyLaboratorymiceTeleostTestosteroneVertebrates

Similar Articles

Cited By (5)