Visual adaptation enhances action sound discrimination.

Nick E Barraclough, Steve A Page, Bruce D Keefe
Author Information
  1. Nick E Barraclough: Department of Psychology, University of York, Heslington, York, YO10 5DD, UK. nick.barraclough@york.ac.uk.
  2. Steve A Page: University of Hull, Hull, UK.
  3. Bruce D Keefe: Department of Psychology, University of York, Heslington, York, YO10 5DD, UK.

Abstract

Prolonged exposure, or adaptation, to a stimulus in 1 modality can bias, but also enhance, perception of a subsequent stimulus presented within the same modality. However, recent research has also found that adaptation in 1 modality can bias perception in another modality. Here, we show a novel crossmodal adaptation effect, where adaptation to a visual stimulus enhances subsequent auditory perception. We found that when compared to no adaptation, prior adaptation to visual, auditory, or audiovisual hand actions enhanced discrimination between 2 subsequently presented hand action sounds. Discrimination was most enhanced when the visual action "matched" the auditory action. In addition, prior adaptation to a visual, auditory, or audiovisual action caused subsequent ambiguous action sounds to be perceived as less like the adaptor. In contrast, these crossmodal action aftereffects were not generated by adaptation to the names of actions. Enhanced crossmodal discrimination and crossmodal perceptual aftereffects may result from separate mechanisms operating in audiovisual action sensitive neurons within perceptual systems. Adaptation-induced crossmodal enhancements cannot be explained by postperceptual responses or decisions. More generally, these results together indicate that adaptation is a ubiquitous mechanism for optimizing perceptual processing of multisensory stimuli.

Keywords

References

  1. Vision Res. 2001 Jan 15;41(2):151-9 [PMID: 11163850]
  2. Nat Neurosci. 2013 Jun;16(6):724-9 [PMID: 23603708]
  3. Perception. 2007;36(6):888-97 [PMID: 17718367]
  4. J Exp Psychol Hum Percept Perform. 2010 Aug;36(4):876-91 [PMID: 20695706]
  5. Science. 1992 May 15;256(5059):1018-21 [PMID: 1589770]
  6. Neuroreport. 2003 Nov 14;14(16):2105-9 [PMID: 14600506]
  7. J Neurophysiol. 2007 May;97(5):3155-64 [PMID: 17344377]
  8. Cognition. 2009 Mar;110(3):432-9 [PMID: 19121519]
  9. Vision Res. 2012 Apr 15;59:1-8 [PMID: 22406522]
  10. Curr Biol. 1996 Oct 1;6(10):1340-2 [PMID: 8939568]
  11. Neurosci Lett. 2005 Aug 12-19;384(1-2):60-5 [PMID: 15908119]
  12. Exp Brain Res. 1987;65(3):614-22 [PMID: 3556488]
  13. Front Psychol. 2015 Feb 19;6:157 [PMID: 25745407]
  14. Science. 2002 Aug 2;297(5582):846-8 [PMID: 12161656]
  15. J Cogn Neurosci. 2009 Sep;21(9):1806-20 [PMID: 18855549]
  16. Vis Neurosci. 1989;2(6):593-607 [PMID: 2487086]
  17. PLoS One. 2013 Nov 13;8(11):e81691 [PMID: 24236215]
  18. Proc Biol Sci. 2000 Sep 7;267(1454):1705-10 [PMID: 12233765]
  19. J Neurophysiol. 2016 Mar;115(3):1324-37 [PMID: 26745246]
  20. Vision Res. 2010 May 12;50(10):963-8 [PMID: 20214920]
  21. Q J Exp Psychol (Hove). 2007 Dec;60(12):1610-5 [PMID: 17853192]
  22. J Vis. 2014 Jan 08;14(1):null [PMID: 24403393]
  23. Hear Res. 2010 Sep 1;268(1-2):38-45 [PMID: 20430084]
  24. Curr Biol. 2009 May 12;19(9):745-50 [PMID: 19361996]
  25. J Vis. 2010 Mar 26;10(3):12.1-11 [PMID: 20377289]
  26. Nat Neurosci. 2004 Jul;7(7):764-72 [PMID: 15195097]
  27. Vision Res. 2007 Mar;47(7):974-89 [PMID: 17316740]
  28. Cereb Cortex. 2002 Oct;12(10):1031-9 [PMID: 12217966]
  29. J Neurophysiol. 1986 Sep;56(3):640-62 [PMID: 3537225]
  30. Nature. 2002 Mar 14;416(6877):172-4 [PMID: 11894093]
  31. Hear Res. 1985 Jan;17(1):1-12 [PMID: 3997676]
  32. Cereb Cortex. 2009 Mar;19(3):593-611 [PMID: 18632741]
  33. J Vis. 2010 Oct 01;10(12):14 [PMID: 21047746]
  34. Vision Res. 1997 Apr;37(7):865-9 [PMID: 9156183]
  35. Front Psychol. 2013 Jun 19;4:358 [PMID: 23801979]
  36. Cognition. 2015 Jan;134:245-51 [PMID: 25460396]
  37. J Exp Biol. 1989 Sep;146:87-113 [PMID: 2689570]
  38. J Cogn Neurosci. 1999 Sep;11(5):473-90 [PMID: 10511637]
  39. Exp Brain Res. 2009 Sep;198(2-3):373-82 [PMID: 19396433]
  40. Percept Psychophys. 1989 Feb;45(2):129-36 [PMID: 2928074]
  41. J Vis. 2009 Apr 30;9(4):25.1-7 [PMID: 19757934]
  42. Vision Res. 2011 Jan;51(1):105-10 [PMID: 20937298]
  43. Prog Brain Res. 1996;112:289-99 [PMID: 8979836]
  44. J Vis. 2008 Jan 04;8(1):1.1-20 [PMID: 18318604]
  45. PLoS One. 2014 Jan 22;9(1):e86502 [PMID: 24466123]
  46. Science. 1990 Jan 19;247(4940):301-6 [PMID: 2296719]
  47. Perspect Psychol Sci. 2011 May;6(3):274-90 [PMID: 26168518]
  48. Atten Percept Psychophys. 2012 Jan;74(1):185-93 [PMID: 22033949]
  49. Vis Neurosci. 2013 Nov;30(5-6):197-206 [PMID: 24476966]
  50. J Opt Soc Am A. 1985 Feb;2(2):147-55 [PMID: 3973752]
  51. J Cogn Neurosci. 2005 Mar;17(3):377-91 [PMID: 15813999]
  52. Psychol Sci. 2011 Jan;22(1):87-94 [PMID: 21164175]
  53. J Acoust Soc Am. 1971 Feb;49(2):Suppl 2:467+ [PMID: 5541744]
  54. Spat Vis. 2002;16(1):45-58 [PMID: 12636224]
  55. Curr Biol. 2008 May 6;18(9):684-8 [PMID: 18450448]

MeSH Term

Adaptation, Physiological
Adult
Auditory Perception
Discrimination, Psychological
Female
Humans
Male
Visual Perception
Young Adult

Word Cloud

Created with Highcharts 10.0.0adaptationactioncrossmodalmodalityvisualauditorystimulusperceptionsubsequentaudiovisualdiscriminationperceptual1canbiasalsopresentedwithinfoundenhancespriorhandactionsenhancedsoundsDiscriminationaftereffectsProlongedexposureenhanceHoweverrecentresearchanothershownoveleffectcompared2subsequently"matched"additioncausedambiguousperceivedlesslikeadaptorcontrastgeneratednamesEnhancedmayresultseparatemechanismsoperatingsensitiveneuronssystemsAdaptation-inducedenhancementsexplainedpostperceptualresponsesdecisionsgenerallyresultstogetherindicateubiquitousmechanismoptimizingprocessingmultisensorystimuliVisualsoundActionAdaptationAuditionCrossmodalMultimodalPerceptionVision

Similar Articles

Cited By (2)