High-Sequence Diversity and Rapid Virus Turnover Contribute to Higher Rates of Coreceptor Switching in Treatment-Experienced Subjects with HIV-1 Viremia.

Rebecca Nedellec, Joshua T Herbeck, Peter W Hunt, Steven G Deeks, James I Mullins, Elizabeth D Anton, Jacqueline D Reeves, Donald E Mosier
Author Information
  1. Rebecca Nedellec: 1 Department of Immunology and Microbial Science, IMM-7, The Scripps Research Institute , La Jolla, California.
  2. Joshua T Herbeck: 2 International Clinical Research Center, Department of Global Health, University of Washington , Seattle, Washington.
  3. Peter W Hunt: 3 Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco , San Francisco, California.
  4. Steven G Deeks: 3 Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco , San Francisco, California.
  5. James I Mullins: 4 Department of Microbiology, University of Washington , Seattle, Washington.
  6. Elizabeth D Anton: 5 Monogram Biosciences, Laboratory Corporation of America® Holding, Virology Research and Development , South San Francisco, California.
  7. Jacqueline D Reeves: 5 Monogram Biosciences, Laboratory Corporation of America® Holding, Virology Research and Development , South San Francisco, California.
  8. Donald E Mosier: 1 Department of Immunology and Microbial Science, IMM-7, The Scripps Research Institute , La Jolla, California.

Abstract

Coreceptor switching from CCR5 to CXCR4 is common during chronic HIV-1 infection, but is even more common in individuals who have failed antiretroviral therapy (ART). Prior studies have suggested rapid mutation and/or recombination of HIV-1 envelope (env) genes during coreceptor switching. We compared the functional and genotypic changes in env of viruses from viremic subjects who had failed ART just before and after coreceptor switching and compared those to viruses from matched subjects without coreceptor switching. Analysis of multiple unique functional env clones from each subject revealed extensive diversity at both sample time points and rapid diversification of sequences during the 4-month interval in viruses from both 9 subjects with coreceptor switching and 15 control subjects. Only two subjects had envs with evidence of recombination. Three findings distinguished env clones from subjects with coreceptor switching from controls: (1) lower entry efficiency via CCR5; (2) longer V1/V2 regions; and (3), lower nadir CD4 T cell counts during prior years of infection. Most of these subjects harbored virus with lower replicative capacity associated with protease (PR) and/or reverse transcriptase inhibitor resistance mutations, and the extensive diversification tended to lead either to improved entry efficiency via CCR5 or the gain of entry function via CXCR4. These results suggest that R5X4 or X4 variants emerge from a diverse, low-fitness landscape shaped by chronic infection, multiple ART resistance mutations, the availability of target cells, and reduced entry efficiency via CCR5.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19396-401 [PMID: 17164328]
  2. J Virol. 2007 Apr;81(7):3369-76 [PMID: 17251288]
  3. PLoS Pathog. 2011 Jun;7(6):e1002106 [PMID: 21731496]
  4. J Evol Biol. 2010 Dec;23(12):2625-35 [PMID: 20964779]
  5. Clin Immunol. 2002 Feb;102(2):154-61 [PMID: 11846457]
  6. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  7. Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):E1126-34 [PMID: 25713386]
  8. J Virol. 1995 Sep;69(9):5723-33 [PMID: 7543586]
  9. J Acquir Immune Defic Syndr. 2011 Nov 1;58(3):233-40 [PMID: 21709569]
  10. J Virol. 1997 Jan;71(1):759-65 [PMID: 8985413]
  11. PLoS Comput Biol. 2012;8(11):e1002753 [PMID: 23133358]
  12. Infect Genet Evol. 2013 Oct;19:369-77 [PMID: 23672855]
  13. J Virol. 2008 Jun;82(11):5584-93 [PMID: 18353956]
  14. BMC Infect Dis. 2014 Dec 13;14:683 [PMID: 25495598]
  15. J Virol. 2003 Jul;77(13):7682-8 [PMID: 12805470]
  16. J Virol. 2004 Oct;78(20):11296-302 [PMID: 15452249]
  17. Bioinformatics. 2012 Jun 15;28(12):1647-9 [PMID: 22543367]
  18. AIDS. 2009 Nov 27;23(18):2541-3 [PMID: 19907212]
  19. J Clin Virol. 2014 Jul;60(3):290-4 [PMID: 24793966]
  20. PLoS One. 2011 Feb 18;6(2):e16052 [PMID: 21364750]
  21. J Virol. 2007 Aug;81(15):8165-79 [PMID: 17507486]
  22. J Infect Dis. 2005 Aug 1;192(3):466-74 [PMID: 15995960]
  23. Immunol Lett. 1999 Mar;66(1-3):71-5 [PMID: 10203036]
  24. J Infect Dis. 2014 Apr 1;209(7):1032-8 [PMID: 24273040]
  25. J Virol. 2013 Sep;87(18):10313-23 [PMID: 23678164]
  26. Nat Med. 2005 Nov;11(11):1170-2 [PMID: 16205738]
  27. J Acquir Immune Defic Syndr. 2015 Apr 15;68(5):487-94 [PMID: 25622054]
  28. PLoS Pathog. 2010 Dec 16;6(12):e1001228 [PMID: 21187897]
  29. PLoS Pathog. 2015 Mar 23;11(3):e1004722 [PMID: 25798934]
  30. J Virol. 2003 Dec;77(24):13376-88 [PMID: 14645592]
  31. Antiviral Res. 2011 Dec;92(3):488-92 [PMID: 22020304]
  32. AIDS Res Hum Retroviruses. 2001 Oct 10;17(15):1405-14 [PMID: 11679153]
  33. AIDS. 2009 Jun 19;23(10):1209-18 [PMID: 19424056]
  34. J Virol. 2008 Dec;82(23):11758-66 [PMID: 18815295]
  35. Virology. 1998 Sep 1;248(2):394-405 [PMID: 9721247]
  36. Infect Genet Evol. 2010 Apr;10(3):356-64 [PMID: 19446658]
  37. J Virol. 1999 Dec;73(12):10489-502 [PMID: 10559367]
  38. J Virol. 2006 Jan;80(2):750-8 [PMID: 16378977]
  39. Virology. 2007 Jun 5;362(2):294-303 [PMID: 17275055]
  40. AIDS. 2006 Jun 12;20(9):1337-8 [PMID: 16816567]
  41. J Infect Dis. 2003 May 15;187(10):1534-43 [PMID: 12721933]
  42. Virology. 2003 Sep 15;314(1):451-9 [PMID: 14517097]
  43. Nat Med. 1996 Nov;2(11):1240-3 [PMID: 8898752]
  44. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  45. AIDS Res Hum Retroviruses. 2003 May;19(5):389-98 [PMID: 12803997]
  46. J Virol Methods. 2015 Mar;214:46-53 [PMID: 25681527]
  47. Annu Rev Immunol. 1999;17:657-700 [PMID: 10358771]
  48. J Mol Biol. 2013 Jan 9;425(1):41-53 [PMID: 23084856]
  49. Virology. 1998 Apr 25;244(1):66-73 [PMID: 9581779]
  50. Virology. 2010 Aug 15;404(1):5-20 [PMID: 20451945]
  51. Retrovirology. 2012 Dec 13;9:106 [PMID: 23237529]
  52. AIDS Res Hum Retroviruses. 2001 May 20;17(8):697-701 [PMID: 11429110]
  53. J Virol. 1997 Sep;71(9):7136-9 [PMID: 9261451]
  54. AIDS Res Hum Retroviruses. 2012 Apr;28(4):324-32 [PMID: 21819257]
  55. PLoS One. 2014 Jul 17;9(7):e102857 [PMID: 25032817]
  56. J Acquir Immune Defic Syndr Hum Retrovirol. 1999 Feb 1;20(2):115-21 [PMID: 10048897]
  57. J Exp Med. 1997 Feb 17;185(4):621-8 [PMID: 9034141]
  58. Syst Biol. 2003 Oct;52(5):696-704 [PMID: 14530136]
  59. J Virol. 1998 May;72(5):4485-91 [PMID: 9557746]
  60. J Virol. 2006 Jan;80(2):802-9 [PMID: 16378982]
  61. Ann Intern Med. 1998 May 1;128(9):780 [PMID: 9556477]
  62. J Infect Dis. 2006 Oct 1;194(7):926-30 [PMID: 16960780]
  63. Virology. 1995 Feb 1;206(2):935-44 [PMID: 7531918]
  64. Mol Biol Evol. 2009 Jul;26(7):1641-50 [PMID: 19377059]
  65. J Virol. 2007 Aug;81(15):7885-93 [PMID: 17507467]
  66. J Acquir Immune Defic Syndr. 2007 Apr 15;44(5):518-24 [PMID: 17224845]
  67. J Virol. 2007 May;81(10):5413-7 [PMID: 17329337]
  68. Antimicrob Agents Chemother. 2007 Feb;51(2):566-75 [PMID: 17116663]
  69. J Acquir Immune Defic Syndr. 2011 Jan 1;56(1):9-15 [PMID: 20921899]
  70. Science. 1991 Jul 5;253(5015):71-4 [PMID: 1905842]
  71. Intervirology. 2015;58(3):155-9 [PMID: 25997386]
  72. J Acquir Immune Defic Syndr. 2001 Aug 15;27(5):472-81 [PMID: 11511825]
  73. Antimicrob Agents Chemother. 2000 Apr;44(4):920-8 [PMID: 10722492]
  74. J Virol. 1997 Oct;71(10):7478-87 [PMID: 9311827]
  75. J Virol. 2007 Aug;81(16):8621-33 [PMID: 17537860]
  76. Clin Microbiol Infect. 2011 May;17(5):725-31 [PMID: 20731681]
  77. J Virol. 1995 Mar;69(3):1755-61 [PMID: 7853514]
  78. Clin Infect Dis. 2007 Feb 15;44(4):591-5 [PMID: 17243065]
  79. J Infect Dis. 2011 Jan 15;203(2):237-45 [PMID: 21288824]
  80. J Infect Dis. 2006 Sep 1;194(5):661-5 [PMID: 16897665]
  81. J Virol. 2001 Jun;75(12):5457-64 [PMID: 11356952]
  82. AIDS Res Hum Retroviruses. 2004 Jan;20(1):111-26 [PMID: 15000703]
  83. J Virol Methods. 2010 Sep;168(1-2):114-20 [PMID: 20451557]
  84. Mol Biol Evol. 2008 Jul;25(7):1307-20 [PMID: 18367465]
  85. Nat Med. 1996 Nov;2(11):1244-7 [PMID: 8898753]
  86. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9434-8 [PMID: 1409653]
  87. PLoS Biol. 2015 Sep 16;13(9):e1002251 [PMID: 26375597]
  88. Antimicrob Agents Chemother. 2005 Nov;49(11):4721-32 [PMID: 16251317]
  89. Curr Opin HIV AIDS. 2009 Mar;4(2):118-24 [PMID: 19339950]

Grants

  1. P30 AI027763/NIAID NIH HHS
  2. P30 AI027757/NIAID NIH HHS
  3. UL1 TR000004/NCATS NIH HHS
  4. R01 AI125026/NIAID NIH HHS
  5. R24 AI067039/NIAID NIH HHS

MeSH Term

Anti-HIV Agents
Evolution, Molecular
Genetic Variation
HIV Infections
HIV-1
Humans
Mutation
Receptors, CCR5
Receptors, CXCR4
Receptors, HIV
Recombination, Genetic
Viral Tropism
Viremia
Virus Attachment
env Gene Products, Human Immunodeficiency Virus

Chemicals

Anti-HIV Agents
CCR5 protein, human
CXCR4 protein, human
Receptors, CCR5
Receptors, CXCR4
Receptors, HIV
env Gene Products, Human Immunodeficiency Virus

Word Cloud

Created with Highcharts 10.0.0switchingsubjectscoreceptorCCR5HIV-1enventryviainfectionARTviruseslowerefficiencyCoreceptorCXCR4commonchronicfailedrapidand/orrecombinationcomparedfunctionalmultipleclonesextensivediversitydiversificationresistancemutationssequenceevenindividualsantiretroviraltherapyPriorstudiessuggestedmutationenvelopegenesgenotypicchangesviremicjustmatchedwithoutAnalysisuniquesubjectrevealedsampletimepointssequences4-monthinterval915controltwoenvsevidenceThreefindingsdistinguishedcontrols:12longerV1/V2regions3nadirCD4 TcellcountsprioryearsharboredvirusreplicativecapacityassociatedproteasePRreversetranscriptaseinhibitortendedleadeitherimprovedgainfunctionresultssuggestR5X4X4variantsemergediverselow-fitnesslandscapeshapedavailabilitytargetcellsreducedHigh-SequenceDiversityRapidVirusTurnoverContributeHigherRatesSwitchingTreatment-ExperiencedSubjectsViremiaevolution

Similar Articles

Cited By