Electrospun carbon nanofibers reinforced 3D porous carbon polyhedra network derived from metal-organic frameworks for capacitive deionization.

Yong Liu, Jiaqi Ma, Ting Lu, Likun Pan
Author Information
  1. Yong Liu: Engineering Research Center for Nanophotonics &Advanced Instrument, Ministry of Education, School of Physics and Material Science, East China Normal University, Shanghai 200062, China.
  2. Jiaqi Ma: Chemistry Department, Soochow University, Suzhou 215123, China.
  3. Ting Lu: Engineering Research Center for Nanophotonics &Advanced Instrument, Ministry of Education, School of Physics and Material Science, East China Normal University, Shanghai 200062, China.
  4. Likun Pan: Engineering Research Center for Nanophotonics &Advanced Instrument, Ministry of Education, School of Physics and Material Science, East China Normal University, Shanghai 200062, China.

Abstract

Carbon nanofibers reinforced 3D porous carbon polyhedra network (e-CNF-PCP) was prepared through electrospinning and subsequent thermal treatment. The morphology, structure and electrochemical performance of the e-CNF-PCP were characterized using scanning electron microscopy, Raman spectra, nitrogen adsorption-desorption, cyclic voltammetry and electrochemical impedance spectroscopy, and their electrosorption performance in NaCl solution was studied. The results show that the e-CNF-PCP exhibits a high electrosorption capacity of 16.98 mg g(-1) at 1.2 V in 500 mg l(-1) NaCl solution, which shows great improvement compared with those of electrospun carbon nanofibers and porous carbon polyhedra. The e-CNF-PCP should be a very promising candidate as electrode material for CDI applications.

References

  1. Environ Sci Technol. 2011 Dec 1;45(23):10243-9 [PMID: 22032802]
  2. Water Res. 2008 Dec;42(20):4923-8 [PMID: 18929385]
  3. Chem Commun (Camb). 2013 Mar 28;49(25):2521-3 [PMID: 23423451]
  4. Water Res. 2013 Apr 1;47(5):1941-52 [PMID: 23395310]
  5. Nat Nanotechnol. 2010 Apr;5(4):297-301 [PMID: 20305644]
  6. Chem Commun (Camb). 2012 Jul 25;48(58):7259-61 [PMID: 22710974]
  7. ACS Nano. 2012 Aug 28;6(8):7084-91 [PMID: 22769428]
  8. Nanotechnology. 2011 Jul 22;22(29):292001 [PMID: 21680966]
  9. Sci Rep. 2015 Jun 11;5:11225 [PMID: 26063676]
  10. Science. 2011 Aug 5;333(6043):712-7 [PMID: 21817042]
  11. ChemSusChem. 2015 Jun 8;8(11):1867-74 [PMID: 25970654]
  12. J Colloid Interface Sci. 2006 Apr 1;296(1):1-8 [PMID: 16480737]
  13. Adv Mater. 2014 May 28;26(20):3258-62 [PMID: 24616022]
  14. Chem Commun (Camb). 2014 Feb 14;50(13):1519-22 [PMID: 24317277]
  15. Chemistry. 2014 Jun 23;20(26):7895-900 [PMID: 24788922]
  16. Sci Rep. 2015 Feb 13;5:8458 [PMID: 25675835]
  17. J Am Chem Soc. 2008 Apr 23;130(16):5390-1 [PMID: 18376833]
  18. Environ Sci Technol. 2008 Nov 15;42(22):8193-201 [PMID: 19068794]
  19. J Colloid Interface Sci. 2015 May 15;446:373-8 [PMID: 25595622]
  20. Chem Commun (Camb). 2015 Aug 4;51(60):12020-3 [PMID: 26121467]

Word Cloud

Created with Highcharts 10.0.0carbone-CNF-PCPnanofibersporouspolyhedrareinforced3DnetworkelectrochemicalperformanceelectrosorptionNaClsolution-1CarbonpreparedelectrospinningsubsequentthermaltreatmentmorphologystructurecharacterizedusingscanningelectronmicroscopyRamanspectranitrogenadsorption-desorptioncyclicvoltammetryimpedancespectroscopystudiedresultsshowexhibitshighcapacity1698 mgg12 V500 mglshowsgreatimprovementcomparedelectrospunpromisingcandidateelectrodematerialCDIapplicationsElectrospunderivedmetal-organicframeworkscapacitivedeionization

Similar Articles

Cited By