Network inference from multimodal data: A review of approaches from infectious disease transmission.

Bisakha Ray, Elodie Ghedin, Rumi Chunara
Author Information
  1. Bisakha Ray: Center for Health Informatics and Bioinformatics, New York University School of Medicine, USA. Electronic address: bisakha.ray@nyumc.org.
  2. Elodie Ghedin: Department of Biology, Center for Genomics & Systems Biology, USA; College of Global Public Health, New York University, USA.
  3. Rumi Chunara: Dept. of Computer Science and Engineering, Tandon School of Engineering, USA; College of Global Public Health, New York University, USA.

Abstract

Networks inference problems are commonly found in multiple biomedical subfields such as genomics, metagenomics, neuroscience, and epidemiology. Networks are useful for representing a wide range of complex interactions ranging from those between molecular biomarkers, neurons, and microbial communities, to those found in human or animal populations. Recent technological advances have resulted in an increasing amount of healthcare data in multiple modalities, increasing the preponderance of network inference problems. Multi-domain data can now be used to improve the robustness and reliability of recovered networks from unimodal data. For infectious diseases in particular, there is a body of knowledge that has been focused on combining multiple pieces of linked information. Combining or analyzing disparate modalities in concert has demonstrated greater insight into disease transmission than could be obtained from any single modality in isolation. This has been particularly helpful in understanding incidence and transmission at early stages of infections that have pandemic potential. Novel pieces of linked information in the form of spatial, temporal, and other covariates including high-throughput sequence data, clinical visits, social network information, pharmaceutical prescriptions, and clinical symptoms (reported as free-text data) also encourage further investigation of these methods. The purpose of this review is to provide an in-depth analysis of multimodal infectious disease transmission network inference methods with a specific focus on Bayesian inference. We focus on analytical Bayesian inference-based methods as this enables recovering multiple parameters simultaneously, for example, not just the disease transmission network, but also parameters of epidemic dynamics. Our review studies their assumptions, key inference parameters and limitations, and ultimately provides insights about improving future network inference methods in multiple applications.

Keywords

References

  1. Sci Rep. 2014 Mar 21;4:4411 [PMID: 24651673]
  2. Int Health. 2015 Mar;7(2):130-8 [PMID: 25733563]
  3. PLoS Comput Biol. 2014 Jan;10(1):e1003457 [PMID: 24465202]
  4. Genetics. 2014 Dec;198(4):1395-404 [PMID: 25313129]
  5. Epidemics. 2014 Jun;7:28-34 [PMID: 24928667]
  6. BMJ. 2015 May 11;350:h1314 [PMID: 25964672]
  7. Curr Infect Dis Rep. 2013 Aug;15(4):316-9 [PMID: 23689991]
  8. Neuroimage. 2011 Jan 15;54(2):875-91 [PMID: 20817103]
  9. Bioinformatics. 2008 Jun 1;24(11):1403-5 [PMID: 18397895]
  10. PLoS Comput Biol. 2012;8(8):e1002653 [PMID: 22927808]
  11. PLoS Comput Biol. 2012;8(11):e1002768 [PMID: 23166481]
  12. J Virol. 2011 Jul;85(14):6923-9 [PMID: 21593168]
  13. J R Soc Interface. 2013 Feb 06;10(81):20120955 [PMID: 23389896]
  14. Lancet. 2003 May 24;361(9371):1779-85 [PMID: 12781537]
  15. BMC Bioinformatics. 2015 Aug 19;16:261 [PMID: 26283178]
  16. Front Genet. 2015 Mar 17;6:104 [PMID: 25852745]
  17. Proc Biol Sci. 2008 Apr 22;275(1637):887-95 [PMID: 18230598]
  18. Proc Natl Acad Sci U S A. 1981 Jan;78(1):454-8 [PMID: 6165991]
  19. J Neurosci Methods. 2012 Feb 15;204(1):68-81 [PMID: 22108139]
  20. N Engl J Med. 2011 Feb 24;364(8):730-9 [PMID: 21345102]
  21. Nat Rev Genet. 2010 Jan;11(1):31-46 [PMID: 19997069]
  22. Genetics. 2013 Nov;195(3):1055-62 [PMID: 24037268]
  23. Ann N Y Acad Sci. 2007 Dec;1115:1-22 [PMID: 17925349]
  24. ISME J. 2011 Sep;5(9):1414-25 [PMID: 21430787]
  25. PLoS Med. 2006 Sep;3(9):e361 [PMID: 16881729]
  26. IEEE Trans Biomed Eng. 2011 Dec;58(12):3469-74 [PMID: 21947516]
  27. PLoS Comput Biol. 2015 May 07;11(5):e1004226 [PMID: 25950956]
  28. Genetics. 1992 Oct;132(2):619-33 [PMID: 1385266]
  29. Genomics. 2011 Jan;97(1):7-18 [PMID: 20951196]
  30. BMC Infect Dis. 2004 Sep 06;4:32 [PMID: 15347429]
  31. Nat Rev Genet. 2015 Feb;16(2):85-97 [PMID: 25582081]
  32. Bioinformatics. 2006 Jul 15;22(14):e184-90 [PMID: 16873470]
  33. PLoS Curr. 2015 May 27;7: [PMID: 26075141]
  34. Syst Biol. 2012 May;61(3):539-42 [PMID: 22357727]
  35. BMC Bioinformatics. 2012 May 30;13:113 [PMID: 22646978]
  36. Expert Rev Mol Diagn. 2010 Jan;10(1):33-48 [PMID: 20014921]
  37. Nat Genet. 2016 Feb;48(2):195-200 [PMID: 26727660]
  38. Proc Biol Sci. 2012 Feb 7;279(1728):444-50 [PMID: 21733899]
  39. J Virol. 2006 Nov;80(22):11274-82 [PMID: 16971422]
  40. Bioinformatics. 2001 Jun;17(6):509-19 [PMID: 11395427]
  41. Genome Med. 2009 Apr 03;1(4):39 [PMID: 19356222]
  42. Bioinformatics. 2011 Jul 1;27(13):i401-9 [PMID: 21685098]
  43. Epidemics. 2015 Mar;10:88-92 [PMID: 25843391]
  44. Science. 2001 Dec 14;294(5550):2310-4 [PMID: 11743192]
  45. Nature. 2008 Apr 10;452(7188):750-4 [PMID: 18401408]
  46. Clin Infect Dis. 1993 Aug;17(2):153-62; quiz 163-4 [PMID: 8399860]
  47. Mol Biol Evol. 2014 Jul;31(7):1869-79 [PMID: 24714079]
  48. Proc Biol Sci. 2014 Mar 11;281(1782):20133251 [PMID: 24619442]
  49. BMC Med. 2006 Oct 23;4:26 [PMID: 17059593]
  50. Heredity (Edinb). 2011 Feb;106(2):383-90 [PMID: 20551981]
  51. Mol Ecol. 2000 Oct;9(10):1657-9 [PMID: 11050560]
  52. J Am Med Inform Assoc. 2016 Jul;23(4):791-5 [PMID: 27107452]
  53. PLoS Comput Biol. 2010 Apr 08;6(4):e1000736 [PMID: 20386735]
  54. PLoS Med. 2007 Jan;4(1):e13 [PMID: 17253899]

MeSH Term

Animals
Bayes Theorem
Communicable Diseases
Humans
Reproducibility of Results
Social Support
Statistics as Topic

Word Cloud

Created with Highcharts 10.0.0inferencedatamultiplenetworkdiseasetransmissionmethodsinfectiousinformationreviewBayesianparametersNetworksproblemsfoundincreasingmodalitiespieceslinkedclinicalalsomultimodalfocusNetworkcommonlybiomedicalsubfieldsgenomicsmetagenomicsneuroscienceepidemiologyusefulrepresentingwiderangecomplexinteractionsrangingmolecularbiomarkersneuronsmicrobialcommunitieshumananimalpopulationsRecenttechnologicaladvancesresultedamounthealthcarepreponderanceMulti-domaincannowusedimproverobustnessreliabilityrecoverednetworksunimodaldiseasesparticularbodyknowledgefocusedcombiningCombininganalyzingdisparateconcertdemonstratedgreaterinsightobtainedsinglemodalityisolationparticularlyhelpfulunderstandingincidenceearlystagesinfectionspandemicpotentialNovelformspatialtemporalcovariatesincludinghigh-throughputsequencevisitssocialpharmaceuticalprescriptionssymptomsreportedfree-textencourageinvestigationpurposeprovidein-depthanalysisspecificanalyticalinference-basedenablesrecoveringsimultaneouslyexamplejustepidemicdynamicsstudiesassumptionskeylimitationsultimatelyprovidesinsightsimprovingfutureapplicationsdata:approachesInfectiousMultimodalTransmission

Similar Articles

Cited By (7)