The Influence of Prior Modes of Growth, Temperature, Medium, and Substrate Surface on Biofilm Formation by Antibiotic-Resistant Campylobacter jejuni.

Amy Huei Teen Teh, Sui Mae Lee, Gary A Dykes
Author Information
  1. Amy Huei Teen Teh: School of Science, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 46150, Selangor Darul Ehsan, Malaysia.
  2. Sui Mae Lee: School of Science, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 46150, Selangor Darul Ehsan, Malaysia.
  3. Gary A Dykes: School of Public Health, Curtin University, Bentley, WA, 6102, Australia. gary.dykes@curtin.edu.au. ORCID

Abstract

Campylobacter jejuni is one of the most common causes of bacterial gastrointestinal food-borne infection worldwide. It has been suggested that biofilm formation may play a role in survival of these bacteria in the environment. In this study, the influence of prior modes of growth (planktonic or sessile), temperatures (37 and 42 °C), and nutrient conditions (nutrient broth and Mueller-Hinton broth) on biofilm formation by eight C. jejuni strains with different antibiotic resistance profiles was examined. The ability of these strains to form biofilm on different abiotic surfaces (stainless steel, glass, and polystyrene) as well as factors potentially associated with biofilm formation (bacterial surface hydrophobicity, auto-aggregation, and initial attachment) was also determined. The results showed that cells grown as sessile culture generally have a greater ability to form biofilm (P < 0.05) compared to their planktonic counterparts. Biofilm was also greater (P < 0.05) in lower nutrient media, while growth at different temperatures affects biofilm formation in a strain-dependent manner. The strains were able to attach and form biofilms on different abiotic surfaces, but none of them demonstrated strong, complex, or structured biofilm formation. There were no clear trends between the bacterial surface hydrophobicity, auto-aggregation, attachment, and biofilm formation by the strains. This finding suggests that environmental factors did affect biofilm formation by C. jejuni, and they are more likely to persist in the environment in the form of mixed-species rather than monospecies biofilms.

References

  1. Microbiology. 2006 Feb;152(Pt 2):387-96 [PMID: 16436427]
  2. Lett Appl Microbiol. 2006 Dec;43(6):596-601 [PMID: 17083703]
  3. Science. 1999 May 21;284(5418):1318-22 [PMID: 10334980]
  4. Appl Environ Microbiol. 2003 May;69(5):3005-7 [PMID: 12732579]
  5. Microb Pathog. 2008 Aug;45(2):86-91 [PMID: 18486439]
  6. J Food Prot. 2007 Jun;70(6):1379-85 [PMID: 17612067]
  7. J Comp Pathol. 1994 Aug;111(2):113-49 [PMID: 7806700]
  8. New Microbiol. 2010 Jan;33(1):37-45 [PMID: 20402412]
  9. Appl Environ Microbiol. 1998 Feb;64(2):733-41 [PMID: 9464415]
  10. Appl Environ Microbiol. 2014 Sep;80(17):5154-60 [PMID: 24928882]
  11. Food Microbiol. 2009 Feb;26(1):44-51 [PMID: 19028304]
  12. Appl Environ Microbiol. 2007 Mar;73(6):1908-13 [PMID: 17259368]
  13. Microb Pathog. 1997 Mar;22(3):155-64 [PMID: 9075218]
  14. J Appl Microbiol. 2000 Nov;89(5):884-91 [PMID: 11119165]
  15. Appl Environ Microbiol. 2010 Apr;76(7):2122-8 [PMID: 20139307]
  16. J Appl Microbiol. 2008 Oct;105(4):1199-208 [PMID: 18557961]
  17. Infect Immun. 1996 Aug;64(8):2945-9 [PMID: 8757818]
  18. Future Microbiol. 2009 Mar;4(2):189-200 [PMID: 19257846]
  19. Curr Microbiol. 2010 Sep;61(3):157-62 [PMID: 20127335]
  20. Int J Food Microbiol. 1998 Jun 30;42(1-2):9-27 [PMID: 9706794]
  21. J Appl Microbiol. 2001 Apr;90(4):637-42 [PMID: 11309077]
  22. Can J Microbiol. 2014 Feb;60(2):105-11 [PMID: 24498987]
  23. J Appl Microbiol. 2007 Feb;102(2):548-54 [PMID: 17241361]
  24. Int J Food Microbiol. 2004 Feb 1;90(3):321-9 [PMID: 14751687]
  25. Food Microbiol. 2011 Aug;28(5):942-50 [PMID: 21569937]
  26. Mol Microbiol. 2005 Nov;58(4):1012-24 [PMID: 16262787]
  27. Front Microbiol. 2015 Jul 13;6:709 [PMID: 26217332]
  28. Antimicrob Agents Chemother. 2009 Nov;53(11):4628-39 [PMID: 19721076]
  29. Genome Announc. 2016 May 05;4(3):null [PMID: 27151799]
  30. J Bacteriol. 2006 Jun;188(12):4312-20 [PMID: 16740937]
  31. Appl Environ Microbiol. 1981 Aug;42(2):375-7 [PMID: 7025760]
  32. J Food Prot. 2010 May;73(5):832-8 [PMID: 20501033]
  33. Int J Food Microbiol. 2003 Dec 15;89(1):1-10 [PMID: 14580968]

MeSH Term

Anti-Bacterial Agents
Bacterial Adhesion
Biofilms
Campylobacter jejuni
Culture Media
Drug Resistance, Bacterial
Temperature

Chemicals

Anti-Bacterial Agents
Culture Media

Word Cloud

Created with Highcharts 10.0.0biofilmformationjejunistrainsdifferentformbacterialnutrientCampylobacterenvironmentgrowthplanktonicsessiletemperaturesbrothCabilityabioticsurfacesfactorssurfacehydrophobicityauto-aggregationattachmentalsogreaterP < 005Biofilmbiofilmsonecommoncausesgastrointestinalfood-borneinfectionworldwidesuggestedmayplayrolesurvivalbacteriastudyinfluencepriormodes3742 °CconditionsMueller-Hintoneightantibioticresistanceprofilesexaminedstainlesssteelglasspolystyrenewellpotentiallyassociatedinitialdeterminedresultsshowedcellsgrownculturegenerallycomparedcounterpartslowermediaaffectsstrain-dependentmannerableattachnonedemonstratedstrongcomplexstructuredcleartrendsfindingsuggestsenvironmentalaffectlikelypersistmixed-speciesrathermonospeciesInfluencePriorModesGrowthTemperatureMediumSubstrateSurfaceFormationAntibiotic-Resistant

Similar Articles

Cited By