PERK Regulates Working Memory and Protein Synthesis-Dependent Memory Flexibility.

Siying Zhu, Keely Henninger, Barbara C McGrath, Douglas R Cavener
Author Information
  1. Siying Zhu: Department of Biology, Center of Cellular Dynamics, the Pennsylvania State University, University Park, Pennsylvania, United States of America.
  2. Keely Henninger: Department of Biology, Center of Cellular Dynamics, the Pennsylvania State University, University Park, Pennsylvania, United States of America.
  3. Barbara C McGrath: Department of Biology, Center of Cellular Dynamics, the Pennsylvania State University, University Park, Pennsylvania, United States of America.
  4. Douglas R Cavener: Department of Biology, Center of Cellular Dynamics, the Pennsylvania State University, University Park, Pennsylvania, United States of America.

Abstract

Perk (EIF2AK3) is an ER-resident eIF2α kinase required for memory flexibility and metabotropic glutamate receptor-dependent long-term depression, processes known to be dependent on new protein synthesis. Here we investigated Perk's role in working memory, a cognitive ability that is independent of new protein synthesis, but instead is dependent on cellular Ca2++ dynamics. We found that working memory is impaired in forebrain-specific Perk knockout and pharmacologically Perk-inhibited mice. Moreover, inhibition of Perk in wild-type mice mimics the fear extinction impairment observed in forebrain-specific Perk knockout mice. Our findings reveal a novel role of Perk in cognitive functions and suggest that Perk regulates both Ca2++ -dependent working memory and protein synthesis-dependent memory flexibility.

References

  1. Learn Mem. 2005 Mar-Apr;12(2):103-10 [PMID: 15805309]
  2. Q J Exp Psychol B. 1986 Nov;38(4):365-95 [PMID: 3809580]
  3. Neuron. 1995 Mar;14(3):477-85 [PMID: 7695894]
  4. Neurosci Biobehav Rev. 2002 Jan;26(1):91-104 [PMID: 11835987]
  5. Science. 1971 Aug 13;173(3997):652-4 [PMID: 4998337]
  6. J Cell Physiol. 2008 Dec;217(3):693-707 [PMID: 18683826]
  7. Endocrinology. 2003 Aug;144(8):3505-13 [PMID: 12865332]
  8. Psychopharmacology (Berl). 1995 May;119(2):139-44 [PMID: 7659760]
  9. PLoS One. 2013 Dec 31;8(12):e84036 [PMID: 24391875]
  10. PLoS One. 2016 Jan 25;11(1):e0147733 [PMID: 26808326]
  11. Nature. 1999 Jan 21;397(6716):271-4 [PMID: 9930704]
  12. Nat Protoc. 2006;1(4):1671-9 [PMID: 17487150]
  13. Nat Neurosci. 2010 Jan;13(1):133-40 [PMID: 20023653]
  14. J Biol Chem. 2013 Nov 22;288(47):33824-36 [PMID: 24114838]
  15. Psychol Bull. 1984 Nov;96(3):518-59 [PMID: 6096908]
  16. Mol Cell Biol. 2002 Jun;22(11):3864-74 [PMID: 11997520]
  17. Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11269-74 [PMID: 15277680]
  18. Cell Metab. 2006 Dec;4(6):491-7 [PMID: 17141632]
  19. Contemp Top Lab Anim Sci. 2000 Jan;39(1):17-21 [PMID: 11178310]
  20. J Med Chem. 2012 Aug 23;55(16):7193-207 [PMID: 22827572]
  21. Cell. 2007 Apr 6;129(1):195-206 [PMID: 17418795]
  22. Cell. 2011 Dec 9;147(6):1384-96 [PMID: 22153080]
  23. Nature. 2005 Aug 25;436(7054):1166-73 [PMID: 16121183]
  24. Learn Mem. 2007 Aug 09;14(8):554-63 [PMID: 17690339]
  25. J Neurosci. 2006 Oct 4;26(40):10129-40 [PMID: 17021169]
  26. Contemp Top Lab Anim Sci. 2004 Nov;43(6):42-51 [PMID: 15669134]
  27. Nature. 1995 Nov 16;378(6554):279-81 [PMID: 7477346]
  28. Neuron. 2003 Aug 14;39(4):655-69 [PMID: 12925279]
  29. J Physiol. 2011 Jul 1;589(Pt 13):3211-29 [PMID: 21576272]
  30. Pharmacol Biochem Behav. 1983 Dec;19(6):963-7 [PMID: 6657730]
  31. Pharmacol Biochem Behav. 2014 Aug;123:45-54 [PMID: 23978501]
  32. Learn Mem. 2014 Apr 16;21(5):298-304 [PMID: 24741110]
  33. Cell. 1996 Dec 27;87(7):1317-26 [PMID: 8980237]
  34. Eur J Pharmacol. 2007 Dec 1;575(1-3):82-6 [PMID: 17678890]
  35. Nature. 1997 Apr 10;386(6625):604-8 [PMID: 9121583]
  36. Nature. 2002 Nov 14;420(6912):173-8 [PMID: 12432392]
  37. Neurosci Biobehav Rev. 2004 Sep;28(5):497-505 [PMID: 15465137]
  38. Neuron. 1999 Oct;24(2):401-14 [PMID: 10571233]
  39. Cell Rep. 2012 Jun 28;1(6):676-88 [PMID: 22813743]
  40. Behav Brain Res. 2011 Jun 1;219(2):329-41 [PMID: 21232555]
  41. Mol Cell. 2000 May;5(5):897-904 [PMID: 10882126]
  42. Nature. 2000 Dec 21-28;408(6815):982-5 [PMID: 11140686]
  43. Diabetes. 2010 Aug;59(8):1937-47 [PMID: 20530744]
  44. Brain Behav Evol. 1981;19(3-4):93-107 [PMID: 7326577]
  45. Neuroreport. 2007 May 7;18(7):719-23 [PMID: 17426606]
  46. Sci Transl Med. 2013 Oct 9;5(206):206ra138 [PMID: 24107777]
  47. Mol Cell Biol. 1998 Dec;18(12):7499-509 [PMID: 9819435]
  48. Cereb Cortex. 2008 Feb;18(2):407-23 [PMID: 17573372]
  49. J Physiol. 1996 Jul 15;494 ( Pt 2):451-64 [PMID: 8842004]
  50. J Biol Chem. 1991 Sep 15;266(26):17067-71 [PMID: 1832668]

Grants

  1. R01 DK088140/NIDDK NIH HHS

MeSH Term

Adenine
Animals
Blotting, Western
Extinction, Psychological
Indoles
Maze Learning
Memory, Short-Term
Mice
Mice, Inbred C57BL
Mice, Knockout
Nerve Tissue Proteins
Prosencephalon
eIF-2 Kinase

Chemicals

7-methyl-5-(1-((3-(trifluoromethyl)phenyl)acetyl)-2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo(2,3-d)pyrimidin-4-amine
Indoles
Nerve Tissue Proteins
PERK kinase
eIF-2 Kinase
Adenine

Word Cloud

Created with Highcharts 10.0.0PERKmemoryproteinworkingmiceflexibilitydependentnewsynthesisrolecognitiveCa2+forebrain-specificPerkknockoutMemoryEIF2AK3ER-residenteIF2αkinaserequiredmetabotropicglutamatereceptor-dependentlong-termdepressionprocessesknowninvestigatedPERK'sabilityindependentinsteadcellulardynamicsfoundimpairedpharmacologicallyPERK-inhibitedMoreoverinhibitionwild-typemimicsfearextinctionimpairmentobservedfindingsrevealnovelfunctionssuggestregulates-dependentsynthesis-dependentRegulatesWorkingProteinSynthesis-DependentFlexibility

Similar Articles

Cited By (13)