Forecasting behavior in smart homes based on sleep and wake patterns.

Jennifer A Williams, Diane J Cook
Author Information

Abstract

BACKGROUND: The goal of this research is to use smart home technology to assist people who are recovering from injuries or coping with disabilities to live independently.
OBJECTIVE: We introduce an algorithm to model and forecast wake and sleep behaviors that are exhibited by the participant. Furthermore, we propose that sleep behavior is impacted by and can be modeled from wake behavior, and vice versa.
METHODS: This paper describes the Behavior Forecasting (BF) algorithm. BF consists of 1) defining numeric values that reflect sleep and wake behavior, 2) forecasting wake and sleep values from past behavior, 3) analyzing the effect of wake behavior on sleep and vice versa, and 4) improving prediction performance by using both wake and sleep scores.
RESULTS: The BF method was evaluated with data collected from 20 smart homes. We found that regardless of the forecasting method utilized, wake behavior and sleep behavior can be modeled with a minimum accuracy of 84%. Additionally, normalizing the wake and sleep scores drastically improves the accuracy to 99%.
CONCLUSIONS: The results show that we can effectively model wake and sleep behaviors in a smart environment. Furthermore, wake behaviors can be predicted from sleep behaviors and vice versa.

Keywords

References

  1. Hum Psychopharmacol. 2008 Oct;23(7):571-85 [PMID: 18680211]
  2. Sleep. 2009 Apr;32(4):491-7 [PMID: 19413143]
  3. Am J Hypertens. 1994 Mar;7(3):217-21 [PMID: 8003271]
  4. Computer (Long Beach Calif). 2013 Jul;46(7):null [PMID: 24415794]
  5. IEEE Trans Inf Technol Biomed. 2012 Nov;16(6):1274-86 [PMID: 22922730]
  6. Sleep Med. 2008 Sep;9 Suppl 1:S10-7 [PMID: 18929313]
  7. IEEE J Biomed Health Inform. 2016 Jul;20(4):1188-94 [PMID: 26292348]
  8. Sleep. 2006 Aug;29(8):1009-14 [PMID: 16944668]
  9. Circ Res. 2010 Feb 19;106(3):447-62 [PMID: 20167942]
  10. Sleep Med Rev. 2002 Feb;6(1):45-54 [PMID: 12531141]
  11. J Psychosom Res. 2002 Sep;53(3):737-40 [PMID: 12217446]
  12. Proc IEEE Inst Electr Electron Eng. 2013 Dec 1;101(12):2470-2494 [PMID: 24431472]
  13. IEEE Trans Cybern. 2013 Jun;43(3):820-8 [PMID: 23033328]
  14. Maturitas. 2009 Oct 20;64(2):90-7 [PMID: 19729255]
  15. J Sleep Res. 2011 Sep;20(3):487-94 [PMID: 20887396]
  16. Pervasive Mob Comput. 2014 Feb 1;10(Pt B):138-154 [PMID: 24729780]
  17. Psychiatry Res. 1989 May;28(2):193-213 [PMID: 2748771]
  18. Diabetes Care. 2009 Nov;32(11):1980-5 [PMID: 19641160]
  19. Pervasive Mob Comput. 2016 Jun;28:51-68 [PMID: 27346990]

Grants

  1. R01 EB009675/NIBIB NIH HHS
  2. R01 EB015853/NIBIB NIH HHS
  3. R01 NR016732/NINR NIH HHS
  4. R25 AG046114/NIA NIH HHS

MeSH Term

Algorithms
Behavior
Humans
Independent Living
Machine Learning
Remote Sensing Technology
Sleep
Sleep Stages

Word Cloud

Created with Highcharts 10.0.0sleepwakebehaviorsmartbehaviorscanviceversaBFforecastingalgorithmmodelFurthermoremodeledForecastingvaluesscoresmethodhomesaccuracyBACKGROUND:goalresearchusehometechnologyassistpeoplerecoveringinjuriescopingdisabilitiesliveindependentlyOBJECTIVE:introduceforecastexhibitedparticipantproposeimpactedMETHODS:paperdescribesBehaviorconsists1definingnumericreflect2past3analyzingeffect4improvingpredictionperformanceusingRESULTS:evaluateddatacollected20foundregardlessutilizedminimum84%Additionallynormalizingdrasticallyimproves99%CONCLUSIONS:resultsshoweffectivelyenvironmentpredictedbasedpatternsMachinelearninganalysisenvironments

Similar Articles

Cited By