The fungal cultivar of leaf-cutter ants produces specific enzymes in response to different plant substrates.

Lily Khadempour, Kristin E Burnum-Johnson, Erin S Baker, Carrie D Nicora, Bobbie-Jo M Webb-Robertson, Richard A White, Matthew E Monroe, Eric L Huang, Richard D Smith, Cameron R Currie
Author Information
  1. Lily Khadempour: Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
  2. Kristin E Burnum-Johnson: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
  3. Erin S Baker: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
  4. Carrie D Nicora: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
  5. Bobbie-Jo M Webb-Robertson: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
  6. Richard A White: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
  7. Matthew E Monroe: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
  8. Eric L Huang: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
  9. Richard D Smith: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
  10. Cameron R Currie: Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.

Abstract

Herbivores use symbiotic microbes to help derive energy and nutrients from plant material. Leaf-cutter ants are a paradigmatic example, cultivating their mutualistic fungus Leucoagaricus gongylophorus on plant biomass that workers forage from a diverse collection of plant species. Here, we investigate the metabolic flexibility of the ants' fungal cultivar for utilizing different plant biomass. Using feeding experiments and a novel approach in metaproteomics, we examine the enzymatic response of L. gongylophorus to leaves, flowers, oats or a mixture of all three. Across all treatments, our analysis identified and quantified 1766 different fungal proteins, including 161 putative biomass-degrading enzymes. We found significant differences in the protein profiles in the fungus gardens of subcolonies fed different plant substrates. When provided with leaves or flowers, which contain the majority of their energy as recalcitrant plant polymers, the fungus gardens produced more proteins predicted to break down cellulose: endoglucanase, exoglucanase and β-glucosidase. Further, the complete metaproteomes for the leaves and flowers treatments were very similar, while the mixed substrate treatment closely resembled the treatment with oats alone. This indicates that when provided a mixture of plant substrates, fungus gardens preferentially break down the simpler, more digestible substrates. This flexible, substrate-specific enzymatic response of the fungal cultivar allows leaf-cutter ants to derive energy from a wide range of substrates, which likely contributes to their ability to be dominant generalist herbivores.

Keywords

References

  1. Bioinformatics. 2011 Oct 15;27(20):2866-72 [PMID: 21852304]
  2. Braz J Med Biol Res. 2004 Oct;37(10):1463-72 [PMID: 15448866]
  3. Biotechnol Biofuels. 2009 Oct 15;2:25 [PMID: 19832970]
  4. Insectes Soc. 2011 May;58(2):145-151 [PMID: 21475686]
  5. FEMS Microbiol Ecol. 2011 Nov;78(2):275-84 [PMID: 21692816]
  6. Curr Microbiol. 2013 Aug;67(2):130-7 [PMID: 23471692]
  7. Am J Physiol Regul Integr Comp Physiol. 2011 Jun;300(6):R1515-23 [PMID: 21451145]
  8. J Proteome Res. 2008 Aug;7(8):3354-63 [PMID: 18597511]
  9. Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14691-6 [PMID: 20679230]
  10. PLoS One. 2015 Aug 28;10(8):e0134752 [PMID: 26317212]
  11. Analyst. 2016 Mar 7;141(5):1649-59 [PMID: 26734689]
  12. J Am Soc Mass Spectrom. 2007 Jul;18(7):1176-87 [PMID: 17512752]
  13. BMC Bioinformatics. 2009 Mar 17;10:87 [PMID: 19292916]
  14. PLoS Genet. 2010 Sep 23;6(9):e1001129 [PMID: 20885794]
  15. Mass Spectrom Rev. 2006 May-Jun;25(3):450-82 [PMID: 16429408]
  16. Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2849-54 [PMID: 21282658]
  17. BMC Genomics. 2013 Dec 28;14:928 [PMID: 24373541]
  18. Mol Ecol. 2014 Mar;23(6):1473-96 [PMID: 23952067]
  19. Proteomics. 2015 Aug;15(16):2766-76 [PMID: 26046661]
  20. PLoS One. 2011 Mar 10;6(3):e17506 [PMID: 21423735]
  21. Genome Announc. 2013 Jan;1(1):null [PMID: 23469353]
  22. J Proteome Res. 2010 Nov 5;9(11):5748-56 [PMID: 20831241]
  23. ISME J. 2012 Sep;6(9):1688-701 [PMID: 22378535]
  24. J Biol Chem. 2015 Jun 12;290(24):15337-49 [PMID: 25931120]
  25. Science. 2009 Nov 20;326(5956):1120-3 [PMID: 19965433]
  26. Genome Announc. 2013 Mar 14;1(2):e0023912 [PMID: 23516234]
  27. Mol Cell Proteomics. 2014 Dec;13(12):3639-46 [PMID: 25433089]
  28. Biosci Biotechnol Biochem. 2007 May;71(5):1244-51 [PMID: 17485852]
  29. ISME J. 2013 Feb;7(2):269-80 [PMID: 23038174]
  30. Mol Cell Proteomics. 2014 Apr;13(4):1119-27 [PMID: 24403597]
  31. J Proteome Res. 2010 Feb 5;9(2):997-1006 [PMID: 20000344]
  32. Appl Environ Microbiol. 1998 Dec;64(12):4820-2 [PMID: 9835568]
  33. Proteomics. 2013 Mar;13(5):766-70 [PMID: 23303698]
  34. Curr Microbiol. 2006 Jul;53(1):68-71 [PMID: 16775790]
  35. Microbiol Res. 2006;161(4):299-303 [PMID: 16380244]
  36. MBio. 2014 Nov 18;5(6):e02077 [PMID: 25406380]
  37. J Biol Chem. 1987 Sep 25;262(27):13212-8 [PMID: 2820965]
  38. Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):583-7 [PMID: 23267060]
  39. Endocrinology. 2012 Sep;153(9):4568-79 [PMID: 22759378]
  40. New Phytol. 2013 Feb;197(3):886-98 [PMID: 23252416]
  41. Proteomics. 2011 Dec;11(24):4736-41 [PMID: 22038874]
  42. Appl Environ Microbiol. 2013 Jun;79(12):3770-8 [PMID: 23584789]
  43. Bioinformatics. 2007 Aug 1;23(15):2021-3 [PMID: 17545182]
  44. Anal Chem. 2008 Jan 1;80(1):294-302 [PMID: 18044960]
  45. J Chem Ecol. 2013 Jul;39(7):1003-6 [PMID: 23807433]

Grants

  1. R01 ES022190/NIEHS NIH HHS
  2. U01 CA184783/NCI NIH HHS

MeSH Term

Agaricales
Animals
Ants
Flowers
Fungal Proteins
Plant Leaves
Plants
Proteomics
Symbiosis

Chemicals

Fungal Proteins

Word Cloud

Created with Highcharts 10.0.0plantsubstratesantsfungusfungaldifferentenergycultivarresponseleavesflowersgardensleaf-cutterderivebiomassmetaproteomicsenzymaticoatsmixturetreatmentsproteinsenzymesprovidedbreaktreatmentHerbivoresusesymbioticmicrobeshelpnutrientsmaterialLeaf-cutterparadigmaticexamplecultivatingmutualisticLeucoagaricusgongylophorusworkersforagediversecollectionspeciesinvestigatemetabolicflexibilityants'utilizingUsingfeedingexperimentsnovelapproachexamineL gongylophorusthreeAcrossanalysisidentifiedquantified1766including161putativebiomass-degradingfoundsignificantdifferencesproteinprofilessubcoloniesfedcontainmajorityrecalcitrantpolymersproducedpredictedcellulose:endoglucanaseexoglucanaseβ-glucosidasecompletemetaproteomessimilarmixedsubstratecloselyresembledaloneindicatespreferentiallysimplerdigestibleflexiblesubstrate-specificallowswiderangelikelycontributesabilitydominantgeneralistherbivoresproducesspecificfungimicrobialecologysymbiosis

Similar Articles

Cited By