Improved Cryopreservation of Human Umbilical Vein Endothelial Cells: A Systematic Approach.

A Billal Sultani, Leah A Marquez-Curtis, Janet A W Elliott, Locksley E McGann
Author Information
  1. A Billal Sultani: Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada.
  2. Leah A Marquez-Curtis: Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada.
  3. Janet A W Elliott: Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada.
  4. Locksley E McGann: Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.

Abstract

Cryopreservation of human umbilical vein endothelial cells (HUVECs) facilitated their commercial availability for use in vascular biology, tissue engineering and drug delivery research; however, the key variables in HUVEC cryopreservation have not been comprehensively studied. HUVECs are typically cryopreserved by cooling at 1 °C/min in the presence of 10% dimethyl sulfoxide (DMSO). We applied interrupted slow cooling (graded freezing) and interrupted rapid cooling with a hold time (two-step freezing) to identify where in the cooling process cryoinjury to HUVECs occurs. We found that linear cooling at 1 °C/min resulted in higher membrane integrities than linear cooling at 0.2 °C/min or nonlinear two-step freezing. DMSO addition procedures and compositions were also investigated. By combining hydroxyethyl starch with DMSO, HUVEC viability after cryopreservation was improved compared to measured viabilities of commercially available cryopreserved HUVECs and viabilities for HUVEC cryopreservation studies reported in the literature. Furthermore, HUVECs cryopreserved using our improved procedure showed high tube forming capability in a post-thaw angiogenesis assay, a standard indicator of endothelial cell function. As well as presenting superior cryopreservation procedures for HUVECs, the methods developed here can serve as a model to optimize the cryopreservation of other cells.

References

  1. Cryobiology. 2010 Jul;60(3 Suppl):S45-53 [PMID: 19501081]
  2. J Atheroscler Thromb. 2002;9(4):178-83 [PMID: 12226549]
  3. J Vis Exp. 2014 Sep 01;(91):e51312 [PMID: 25225985]
  4. Transfus Apher Sci. 2012 Apr;46(2):137-47 [PMID: 22349548]
  5. Cryobiology. 1980 Feb;17 (1):54-65 [PMID: 6156052]
  6. BMC Biotechnol. 2012 Aug 13;12:49 [PMID: 22889198]
  7. Tissue Eng. 2006 Dec;12(12):3439-47 [PMID: 17518680]
  8. Cryobiology. 1979 Jun;16(3):211-6 [PMID: 477367]
  9. Biophys J. 1988 Sep;54(3):471-88 [PMID: 3207835]
  10. Ann Vasc Surg. 1995 May;9(3):266-73 [PMID: 7632555]
  11. J Biol Chem. 1997 Jan 3;272(1):601-8 [PMID: 8995303]
  12. Arterioscler Thromb. 1991 Nov-Dec;11(6):1821-9 [PMID: 1931884]
  13. J Transl Med. 2012 May 16;10:98 [PMID: 22591741]
  14. Transfusion. 2007 May;47(5):935-45 [PMID: 17465961]
  15. Transfusion. 2010 Oct;50(10):2158-66 [PMID: 20492608]
  16. Cell Biophys. 1987 Apr;10(2):169-89 [PMID: 2443249]
  17. Cryobiology. 2016 Jun;72(3):183-90 [PMID: 27182035]
  18. Cryobiology. 1971 Apr;8(2):173-83 [PMID: 5578883]
  19. Int J Cancer. 1998 Mar 2;75(5):780-6 [PMID: 9495249]
  20. J Clin Invest. 1973 Nov;52(11):2745-56 [PMID: 4355998]
  21. Biochim Biophys Acta. 1953 May;11(1):28-36 [PMID: 13066452]
  22. Clin Chem. 2003 Jan;49(1):32-40 [PMID: 12507958]
  23. Biopreserv Biobank. 2012 Oct;10(5):462-71 [PMID: 23840923]
  24. Cryobiology. 1994 Aug;31(4):349-54 [PMID: 7523025]
  25. Biophys J. 1990 Mar;57(3):525-32 [PMID: 2306499]
  26. Biomaterials. 2003 Nov;24(25):4655-61 [PMID: 12951008]
  27. Cryobiology. 2010 Aug;61(1):46-51 [PMID: 20471968]
  28. Cryobiology. 1976 Jun;13(3):269-73 [PMID: 1277867]
  29. Biophys J. 2009 Apr 8;96(7):2559-71 [PMID: 19348741]
  30. Vox Sang. 1992;62(3):146-51 [PMID: 1376948]
  31. Ann N Y Acad Sci. 1965 Oct 13;125(2):658-76 [PMID: 5221662]
  32. Cryobiology. 2004 Oct;49(2):169-80 [PMID: 15351688]
  33. Bone Marrow Transplant. 1994 Jun;13(6):801-4 [PMID: 7920317]
  34. Ann Hematol. 2004 Jan;83(1):50-4 [PMID: 14615914]
  35. Philos Trans R Soc Lond B Biol Sci. 1977 Mar 29;278(959):191-205 [PMID: 17873]
  36. Blood. 1998 May 15;91(10):3527-61 [PMID: 9572988]
  37. Cryobiology. 1978 Aug;15(4):382-90 [PMID: 81120]
  38. Blood. 1987 Oct;70(4):974-8 [PMID: 2443203]
  39. Cryobiology. 1980 Jun;17(3):262-72 [PMID: 6157509]
  40. Tissue Eng. 2001 Oct;7(5):507-18 [PMID: 11694185]
  41. J Natl Cancer Inst. 2004 Oct 6;96(19):1473-7 [PMID: 15467037]
  42. Cryobiology. 1976 Jun;13(3):261-8 [PMID: 1277866]
  43. Biochem Pharmacol. 2001 Feb 1;61(3):253-70 [PMID: 11172729]
  44. Cryobiology. 1980 Jun;17(3):311-7 [PMID: 7408521]
  45. Science. 1970 May 22;168(3934):939-49 [PMID: 5462399]
  46. J Gen Physiol. 1963 Nov;47:347-69 [PMID: 14085017]
  47. Nature. 1959 May 16;183(4672):1394-5 [PMID: 13657132]
  48. J Vet Med Sci. 2008 Nov;70(11):1211-7 [PMID: 19057140]
  49. Exp Cell Res. 1972;71(2):345-55 [PMID: 5045639]
  50. Nature. 1968 Dec 28;220(5174):1315-7 [PMID: 5701346]
  51. Bone Marrow Transplant. 2003 Jun;31(11):1043-51 [PMID: 12774058]
  52. Cryobiology. 2010 Aug;61(1):38-45 [PMID: 20471379]
  53. Transplant Proc. 2004 May;36(4):1133-4 [PMID: 15194395]
  54. Blood. 2003 Nov 1;102(9):3340-8 [PMID: 12855563]
  55. Cryobiology. 2005 Apr;50(2):154-61 [PMID: 15843005]
  56. Cardiovasc Res. 2012 Apr 1;94(1):3-5 [PMID: 22379038]
  57. Science. 1967 Sep 15;157(3794):1312-3 [PMID: 6038996]
  58. Biomaterials. 2016 Jan;74:53-63 [PMID: 26447555]
  59. Cold Spring Harb Perspect Biol. 2011 Aug 01;3(8):a005090 [PMID: 21807843]
  60. Cryobiology. 1972 Apr;9(2):131-6 [PMID: 5035147]
  61. Curr Eye Res. 1985 Sep;4(9):963-73 [PMID: 4064736]
  62. PLoS One. 2014 Feb 12;9(2):e88696 [PMID: 24533137]
  63. Cryobiology. 2014 Aug;69(1):91-9 [PMID: 24880088]
  64. Cryobiology. 1987 Feb;24(1):11-6 [PMID: 3816285]
  65. Cryobiology. 2002 Aug;45(1):68-79 [PMID: 12445551]
  66. Blood. 1981 Mar;57(3):592-8 [PMID: 7459435]
  67. Cryobiology. 1977 Jun;14(3):273-86 [PMID: 891223]
  68. Biomaterials. 2016 Jan;77:207-15 [PMID: 26606446]
  69. Cryobiology. 2015 Oct;71(2):306-17 [PMID: 26254036]
  70. Cryobiology. 1986 Feb;23(1):1-13 [PMID: 3956226]
  71. Cytotherapy. 2012 Jul;14(6):694-700 [PMID: 22519634]
  72. Cryobiology. 2002 Feb;44(1):46-53 [PMID: 12061847]
  73. Cell Transplant. 2008;17(1-2):61-7 [PMID: 18468236]
  74. Bull Cancer. 2004 Apr;91(4):E97-102 [PMID: 15562559]
  75. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8795-800 [PMID: 9238057]
  76. Front Plant Sci. 2013 Apr 17;4:90 [PMID: 23616787]

Grants

  1. MOP 86492/CIHR
  2. INO 126778/CIHR
  3. INO 131572/CIHR
  4. MOP 133684/CIHR

MeSH Term

Cryopreservation
Cryoprotective Agents
Dimethyl Sulfoxide
Human Umbilical Vein Endothelial Cells
Humans
Time Factors

Chemicals

Cryoprotective Agents
Dimethyl Sulfoxide

Word Cloud

Created with Highcharts 10.0.0HUVECscoolingcryopreservationHUVECcryopreservedDMSOfreezingCryopreservationendothelialcells1 °C/mininterruptedtwo-steplinearproceduresimprovedviabilitieshumanumbilicalveinfacilitatedcommercialavailabilityusevascularbiologytissueengineeringdrugdeliveryresearchhoweverkeyvariablescomprehensivelystudiedtypicallypresence10%dimethylsulfoxideappliedslowgradedrapidholdtimeidentifyprocesscryoinjuryoccursfoundresultedhighermembraneintegrities02 °C/minnonlinearadditioncompositionsalsoinvestigatedcombininghydroxyethylstarchviabilitycomparedmeasuredcommerciallyavailablestudiesreportedliteratureFurthermoreusingprocedureshowedhightubeformingcapabilitypost-thawangiogenesisassaystandardindicatorcellfunctionwellpresentingsuperiormethodsdevelopedcanservemodeloptimizeImprovedHumanUmbilicalVeinEndothelialCells:SystematicApproach

Similar Articles

Cited By