PERK regulates G protein-coupled intracellular Ca dynamics in primary cortical neurons.

Siying Zhu, Barbara C McGrath, Yuting Bai, Xin Tang, Douglas R Cavener
Author Information
  1. Siying Zhu: Department of Biology, Center of Cellular Dynamics, the Pennsylvania State University, University Park, PA, 16802, USA.
  2. Barbara C McGrath: Department of Biology, Center of Cellular Dynamics, the Pennsylvania State University, University Park, PA, 16802, USA.
  3. Yuting Bai: Department of Biology, Center of Cellular Dynamics, the Pennsylvania State University, University Park, PA, 16802, USA.
  4. Xin Tang: Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA.
  5. Douglas R Cavener: Department of Biology, Center of Cellular Dynamics, the Pennsylvania State University, University Park, PA, 16802, USA. drc9@psu.edu.

Abstract

PERK (EIF2AK3) is an ER-resident eIF2α kinase required for behavioral flexibility and metabotropic glutamate receptor-dependent long-term depression via its translational control. Motivated by the recent discoveries that PERK regulates Ca dynamics in insulin-secreting β-cells underlying glucose-stimulated insulin secretion, and modulates Ca signals-dependent working memory, we explored the role of PERK in regulating G protein-coupled Ca dynamics in pyramidal neurons. We found that acute PERK inhibition by the use of a highly specific PERK inhibitor reduced the intracellular Ca rise stimulated by the activation of acetylcholine, metabotropic glutamate and bradykinin-2 receptors in primary cortical neurons. More specifically, acute PERK inhibition increased IP receptor mediated ER Ca release, but decreased receptor-operated extracellular Ca influx. Impaired G protein-coupled intracellular Ca rise was also observed in genetic Perk knockout neurons. Taken together, our findings reveal a novel role of PERK in neurons, which is eIF2α-independent, and suggest that the impaired working memory in forebrain-specific Perk knockout mice may stem from altered G protein-coupled intracellular Ca dynamics in cortical pyramidal neurons.

Keywords

References

  1. Neuron. 1998 Jul;21(1):13-26 [PMID: 9697848]
  2. FEBS Lett. 2015 Jun 22;589(14):1607-19 [PMID: 25980603]
  3. Cell. 1996 May 31;85(5):661-71 [PMID: 8646775]
  4. Nat Genet. 1999 Sep;23(1):99-103 [PMID: 10471508]
  5. Methods. 2008 Nov;46(3):204-12 [PMID: 18929662]
  6. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2060-4 [PMID: 10051594]
  7. PLoS One. 2016 Sep 14;11(9):e0162766 [PMID: 27627766]
  8. Psychopharmacology (Berl). 1995 May;119(2):139-44 [PMID: 7659760]
  9. Brain Res Mol Brain Res. 1999 Jan 22;64(1):41-51 [PMID: 9889314]
  10. Cell Calcium. 2014 Sep;56(3):215-24 [PMID: 25108568]
  11. Nature. 1999 Jan 21;397(6716):271-4 [PMID: 9930704]
  12. Curr Biol. 1996 Oct 1;6(10):1307-16 [PMID: 8939573]
  13. Cell Tissue Res. 2005 Nov;322(2):201-6 [PMID: 16044320]
  14. J Biol Chem. 1998 Apr 24;273(17):10279-87 [PMID: 9553080]
  15. Am J Physiol Cell Physiol. 2004 Dec;287(6):C1709-16 [PMID: 15342342]
  16. J Biol Chem. 2013 Nov 22;288(47):33824-36 [PMID: 24114838]
  17. Handb Exp Pharmacol. 2007;(179):593-614 [PMID: 17217081]
  18. J Neurosci. 2001 Feb 1;21(3):788-97 [PMID: 11157065]
  19. Mol Cell Biol. 2002 Jun;22(11):3864-74 [PMID: 11997520]
  20. PLoS One. 2010 Aug 05;5(8):e11925 [PMID: 20700529]
  21. EMBO J. 1996 Nov 15;15(22):6166-71 [PMID: 8947038]
  22. J Med Chem. 2012 Aug 23;55(16):7193-207 [PMID: 22827572]
  23. J Cell Biol. 1997 Sep 22;138(6):1333-41 [PMID: 9298988]
  24. Cell. 2007 Apr 6;129(1):195-206 [PMID: 17418795]
  25. J Biol Chem. 2003 Aug 1;278(31):29031-40 [PMID: 12721302]
  26. Cell. 2011 Dec 9;147(6):1384-96 [PMID: 22153080]
  27. J Biol Chem. 2005 Sep 9;280(36):32035-47 [PMID: 15994335]
  28. J Comp Neurol. 2000 Nov 6;427(1):1-18 [PMID: 11042588]
  29. Brain Res. 2006 Apr 26;1085(1):132-7 [PMID: 16580647]
  30. Nature. 2005 Aug 25;436(7054):1166-73 [PMID: 16121183]
  31. J Neurosci. 1997 Jul 15;17(14):5366-79 [PMID: 9204921]
  32. Learn Mem. 2007 Aug 09;14(8):554-63 [PMID: 17690339]
  33. Nature. 1999 Jan 21;397(6716):259-63 [PMID: 9930701]
  34. J Biol Chem. 1999 Sep 24;274(39):27359-70 [PMID: 10488066]
  35. J Biol Chem. 2000 Jun 9;275(23):17517-26 [PMID: 10837492]
  36. Neuron. 2001 Mar;29(3):645-55 [PMID: 11301024]
  37. Neuron. 2012 Mar 8;73(5):862-85 [PMID: 22405199]
  38. J Physiol. 2011 Jul 1;589(Pt 13):3211-29 [PMID: 21576272]
  39. Pharmacol Biochem Behav. 1983 Dec;19(6):963-7 [PMID: 6657730]
  40. Neuron. 2000 Oct;28(1):233-44 [PMID: 11086997]
  41. J Neurosci. 2003 Aug 27;23 (21):7737-41 [PMID: 12944501]
  42. Learn Mem. 2014 Apr 16;21(5):298-304 [PMID: 24741110]
  43. J Biol Chem. 2012 Dec 28;287(53):44338-44 [PMID: 23148209]
  44. Eur J Pharmacol. 2007 Dec 1;575(1-3):82-6 [PMID: 17678890]
  45. Nature. 2002 Nov 14;420(6912):173-8 [PMID: 12432392]
  46. Mol Cell Biol. 2012 Jun;32(12 ):2268-78 [PMID: 22493067]
  47. Trends Pharmacol Sci. 2004 Jun;25(6):317-24 [PMID: 15165747]
  48. Cell Rep. 2012 Jun 28;1(6):676-88 [PMID: 22813743]
  49. Neuroreport. 2007 May 7;18(7):719-23 [PMID: 17426606]
  50. Nature. 1998 Dec 3;396(6710):478-82 [PMID: 9853757]
  51. Neuron. 1996 Jun;16(6):1189-96 [PMID: 8663995]
  52. Cereb Cortex. 2008 Feb;18(2):407-23 [PMID: 17573372]
  53. Cell. 1995 Nov 3;83(3):463-72 [PMID: 8521476]
  54. EMBO J. 1998 Aug 3;17(15):4274-82 [PMID: 9687496]
  55. J Biol Chem. 1991 Sep 15;266(26):17067-71 [PMID: 1832668]

Grants

  1. R01 DK088140/NIDDK NIH HHS

MeSH Term

Animals
Calcium
Cells, Cultured
Cerebral Cortex
Endoplasmic Reticulum
GTP-Binding Protein alpha Subunits, Gq-G11
Mice, Inbred C57BL
Mice, Knockout
Models, Biological
Neurons
eIF-2 Kinase

Chemicals

PERK kinase
eIF-2 Kinase
GTP-Binding Protein alpha Subunits, Gq-G11
Calcium

Word Cloud

Created with Highcharts 10.0.0PERKCaneuronsprotein-coupledGintracellulardynamicscorticalmetabotropicglutamateregulatesworkingmemoryrolepyramidalacuteinhibitionriseprimaryreceptorPerkknockoutCa2+EIF2AK3ER-residenteIF2αkinaserequiredbehavioralflexibilityreceptor-dependentlong-termdepressionviatranslationalcontrolMotivatedrecentdiscoveriesinsulin-secretingβ-cellsunderlyingglucose-stimulatedinsulinsecretionmodulatessignals-dependentexploredregulatingfoundusehighlyspecificinhibitorreducedstimulatedactivationacetylcholinebradykinin-2receptorsspecificallyincreasedIPmediatedERreleasedecreasedreceptor-operatedextracellularinfluxImpairedalsoobservedgeneticTakentogetherfindingsrevealnoveleIF2α-independentsuggestimpairedforebrain-specificmicemaystemaltereddynamics inGqReceptor-operatedentry

Similar Articles

Cited By