Re-establishment of nucleosome occupancy during double-strand break repair in budding yeast.

Michael Tsabar, Wade M Hicks, Olga Tsaponina, James E Haber
Author Information
  1. Michael Tsabar: Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, United States.
  2. Wade M Hicks: Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, United States.
  3. Olga Tsaponina: Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, United States.
  4. James E Haber: Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, United States. Electronic address: haber@brandeis.edu.

Abstract

Homologous recombination (HR) is an evolutionarily conserved pathway in eukaryotes that repairs a double-strand break (DSB) by copying homologous sequences from a sister chromatid, a homologous chromosome or an ectopic location. Recombination is challenged by the packaging of DNA into nucleosomes, which may impair the process at many steps, from resection of the DSB ends to the re-establishement of nucleosomes after repair. However, nucleosome dynamics during DSB repair have not been well described, primarily because of a lack of well-ordered nucleosomes around a DSB. We designed a system in budding yeast Saccharomyces cerevisiae to monitor nucleosome dynamics during repair of an HO endonuclease-induced DSB. Nucleosome occupancy around the break is lost following DSB formation, by 5'-3' resection of the DSB end. Soon after repair is complete, nucleosome occupancy is partially restored in a repair-dependent but cell cycle-independent manner. Full re-establishment of nucleosome protection back to the level prior to DSB induction is achieved when the cell cycle resumes following repair. These findings may have implications to the mechanisms by which cells sense the completion of repair.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13475-80 [PMID: 23898170]
  2. Nature. 2005 Jul 14;436(7048):294-8 [PMID: 16015338]
  3. Nature. 2012 Sep 27;489(7417):576-80 [PMID: 22960743]
  4. Nature. 2004 Oct 21;431(7011):1011-7 [PMID: 15496928]
  5. Curr Opin Genet Dev. 2013 Apr;23(2):166-73 [PMID: 23602331]
  6. Methods Mol Biol. 2012;920:349-70 [PMID: 22941616]
  7. Proc Natl Acad Sci U S A. 2006 May 2;103(18):6988-93 [PMID: 16627621]
  8. Mol Cell Biol. 2004 Dec;24(24):10965-74 [PMID: 15572697]
  9. Mol Cell. 2003 Jul;12(1):209-19 [PMID: 12887906]
  10. Mol Cell Biol. 1983 Apr;3(4):720-30 [PMID: 6855773]
  11. Mol Cell. 2005 Jul 22;19(2):147-57 [PMID: 16039585]
  12. EMBO J. 2005 Jun 15;24(12):2138-49 [PMID: 15920479]
  13. Elife. 2016 Jun 08;5:null [PMID: 27269284]
  14. Epigenomics. 2009 Dec;1(2):371-85 [PMID: 20495614]
  15. Mol Cell Biol. 1999 Dec;19(12):7944-50 [PMID: 10567520]
  16. J Biol Chem. 2007 Sep 21;282(38):27693-701 [PMID: 17652077]
  17. Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1151-6 [PMID: 19164567]
  18. Mol Cell Biol. 2012 Nov;32(22):4727-40 [PMID: 23007155]
  19. EMBO J. 2007 Sep 19;26(18):4113-25 [PMID: 17762868]
  20. Cell. 2008 Jul 25;134(2):244-55 [PMID: 18662540]
  21. Curr Biol. 2001 Jul 10;11(13):1053-7 [PMID: 11470411]
  22. Cell. 2009 Sep 18;138(6):1109-21 [PMID: 19766565]
  23. Mol Cell Biol. 1998 Sep;18(9):5392-403 [PMID: 9710623]
  24. Mol Cell Biol. 2007 Mar;27(5):1602-13 [PMID: 17178837]
  25. Cell. 1992 Nov 27;71(5):853-64 [PMID: 1423633]
  26. Yeast. 2006 Oct-Nov;23(14-15):1045-51 [PMID: 17083135]
  27. EMBO J. 2004 Dec 8;23(24):4868-75 [PMID: 15549137]
  28. Biochemistry. 2006 Mar 7;45(9):2852-61 [PMID: 16503640]
  29. Mol Cell. 2005 Jan 21;17(2):301-11 [PMID: 15664198]
  30. Nucleic Acids Res. 2015 Aug 18;43(14):6889-901 [PMID: 26019182]
  31. EMBO J. 1986 Oct;5(10):2689-96 [PMID: 3536481]
  32. Cell. 2008 Jul 25;134(2):231-43 [PMID: 18662539]
  33. Annu Rev Biochem. 2014;83:487-517 [PMID: 24905786]
  34. Genes Dev. 2006 Sep 1;20(17):2437-49 [PMID: 16951256]
  35. Cell. 1993 Nov 19;75(4):729-39 [PMID: 8242745]
  36. Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3108-15 [PMID: 21292986]
  37. Biochim Biophys Acta. 2012 Jul;1819(7):639-43 [PMID: 22306662]
  38. Mol Cell. 2006 Jul 7;23 (1):109-19 [PMID: 16818235]
  39. EMBO J. 1990 Mar;9(3):663-73 [PMID: 2178924]
  40. Genes Dev. 2015 Mar 15;29(6):585-90 [PMID: 25792596]
  41. Nat Methods. 2009 Dec;6(12 ):917-22 [PMID: 19915560]
  42. Microbiol Spectr. 2015 Apr;3(2):MDNA3-0013-2014 [PMID: 26104712]
  43. EMBO Rep. 2002 Apr;3(4):329-34 [PMID: 11897662]
  44. Curr Opin Genet Dev. 2013 Apr;23(2):140-6 [PMID: 23347596]
  45. Genes Dev. 2016 May 15;30(10 ):1211-24 [PMID: 27222517]
  46. Cell. 2011 Jan 21;144(2):200-13 [PMID: 21241891]
  47. Nature. 2012 Sep 27;489(7417):581-4 [PMID: 22960744]
  48. Science. 2001 Jan 26;291(5504):650-3 [PMID: 11158677]
  49. Cold Spring Harb Perspect Biol. 2013 Aug 01;5(8):a010207 [PMID: 23751185]
  50. Cell. 2007 Aug 10;130(3):499-511 [PMID: 17693258]
  51. Science. 2001 Jan 26;291(5504):646-50 [PMID: 11158676]

Grants

  1. R01 GM020056/NIGMS NIH HHS
  2. R01 GM061766/NIGMS NIH HHS
  3. R37 GM020056/NIGMS NIH HHS

MeSH Term

Biological Assay
Cell Cycle
Cell Cycle Proteins
DNA Breaks, Double-Stranded
DNA Damage
DNA, Fungal
Gene Expression Regulation, Fungal
Histones
Nucleosomes
Recombinational DNA Repair
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins

Chemicals

Cell Cycle Proteins
DNA, Fungal
Histones
Nucleosomes
Saccharomyces cerevisiae Proteins

Word Cloud

Created with Highcharts 10.0.0DSBrepairnucleosomebreaknucleosomesdynamicsoccupancydouble-strandhomologousmayresectionaroundbuddingyeastNucleosomefollowingcellcycleChromatinHomologousrecombinationHRevolutionarilyconservedpathwayeukaryotesrepairscopyingsequencessisterchromatidchromosomeectopiclocationRecombinationchallengedpackagingDNAimpairprocessmanystepsendsre-establishementHoweverwelldescribedprimarilylackwell-ordereddesignedsystemSaccharomycescerevisiaemonitorHOendonuclease-inducedlostformation5'-3'endSooncompletepartiallyrestoredrepair-dependentcycle-independentmannerFullre-establishmentprotectionbacklevelpriorinductionachievedresumesfindingsimplicationsmechanismscellssensecompletionRe-establishmentCellDouble-strand

Similar Articles

Cited By