Increased precursor microRNA-21 following status epilepticus can compete with mature microRNA-21 to alter translation.

Kayam Chak, Biswajoy Roy-Chaudhuri, Hak Kyun Kim, Kayla C Kemp, Brenda E Porter, Mark A Kay
Author Information
  1. Kayam Chak: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA USA.
  2. Biswajoy Roy-Chaudhuri: Departments of Pediatrics and Genetics, Stanford University, Stanford, CA USA.
  3. Hak Kyun Kim: Departments of Pediatrics and Genetics, Stanford University, Stanford, CA USA.
  4. Kayla C Kemp: Departments of Pediatrics and Genetics, Stanford University, Stanford, CA USA.
  5. Brenda E Porter: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA USA. Electronic address: brenda2@stanford.edu.
  6. Mark A Kay: Departments of Pediatrics and Genetics, Stanford University, Stanford, CA USA.

Abstract

MicroRNA-21 (miR-21) is consistently up-regulated in various neurological disorders, including epilepsy. Here, we show that the biogenesis of miR-21 is altered following pilocarpine-induced status epilepticus (SE) with an increase in precursor miR-21 (pre-miR-21) in rats. We demonstrate that pre-miR-21 has an energetically favorable site overlapping with the miR-21 binding site and competes with mature miR-21 for binding in the 3'UTR of TGFBR2 mRNA, but not NT-3 mRNA in vitro. This binding competition influences miR-21-mediated repression in vitro and correlates with the increase in TGFBR2 and decrease in NT-3 following SE. Polysome profiling reveals co-localization of pre-miR-21 in the ribosome fraction with translating mRNAs in U-87 cells. The current work suggests that pre-miR-21 may post-transcriptionally counteract miR-21-mediated suppression following SE and could potentially lead to prolonged TGF-β receptor expression impacting epileptogenesis. The study further supports that the ratio of the pre to mature miRNA may be important in determining the regulatory effects of a miRNA gene.

Keywords

References

  1. BMC Genomics. 2010 Apr 08;11:230 [PMID: 20377889]
  2. Nat Struct Mol Biol. 2006 Dec;13(12):1108-14 [PMID: 17128272]
  3. PLoS One. 2013 Oct 11;8(10):e76051 [PMID: 24146813]
  4. PLoS One. 2012;7(5):e35921 [PMID: 22615744]
  5. Epilepsy Res. 2009 Aug;85(2-3):142-9 [PMID: 19362806]
  6. Cell. 2003 Jun 13;113(6):685-700 [PMID: 12809600]
  7. Epilepsy Res. 1998 Feb;29(3):211-20 [PMID: 9551783]
  8. Carcinogenesis. 2012 Jan;33(1):68-76 [PMID: 22072622]
  9. Mol Cell. 2010 Aug 13;39(3):373-84 [PMID: 20705240]
  10. Nat Rev Neurosci. 2006 Dec;7(12):911-20 [PMID: 17115073]
  11. Nature. 2008 Jul 3;454(7200):56-61 [PMID: 18548003]
  12. Clin Cancer Res. 2009 Jun 15;15(12 ):3998-4008 [PMID: 19509158]
  13. Eur J Neurosci. 2010 Mar;31(6):1100-7 [PMID: 20214679]
  14. Epilepsia. 2012 Jul;53(7):1215-24 [PMID: 22708826]
  15. Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):360-5 [PMID: 14691248]
  16. Nat Med. 2012 Jul;18(7):1087-94 [PMID: 22683779]
  17. Brain Res. 2011 Nov 18;1424:53-9 [PMID: 22019057]
  18. J Neurosci. 2009 Jul 15;29(28):8927-35 [PMID: 19605630]
  19. Nat Rev Mol Cell Biol. 2005 May;6(5):376-85 [PMID: 15852042]
  20. Neuroscience. 2002;115(4):1295-308 [PMID: 12453498]
  21. EMBO J. 2010 Oct 6;29(19):3272-85 [PMID: 20808284]
  22. Neurobiol Dis. 2015 Jun;78:115-25 [PMID: 25836421]
  23. BMJ. 2006 Feb 11;332(7537):339-42 [PMID: 16470055]
  24. FEBS J. 2010 Oct;277(20):4299-307 [PMID: 20840605]
  25. Genes Dev. 2013 Apr 1;27(7):778-92 [PMID: 23535236]
  26. Electroencephalogr Clin Neurophysiol. 1972 Mar;32(3):281-94 [PMID: 4110397]
  27. Nat Rev Mol Cell Biol. 2014 Aug;15(8):509-24 [PMID: 25027649]
  28. RNA. 2012 Sep;18(9):1612-23 [PMID: 22836355]
  29. RNA. 2004 Oct;10(10):1507-17 [PMID: 15383676]
  30. Cold Spring Harb Symp Quant Biol. 2006;71:531-5 [PMID: 17381336]
  31. J Cell Mol Med. 2009 Jan;13(1):39-53 [PMID: 19175699]
  32. Oncogene. 2014 Jul 31;33(31):4097-106 [PMID: 24037531]
  33. Genome Res. 2009 Jan;19(1):92-105 [PMID: 18955434]
  34. Prog Brain Res. 2007;163:371-97 [PMID: 17765730]
  35. Sci Rep. 2016 Feb 11;6:20850 [PMID: 26865164]
  36. Epilepsy Behav. 2009 Jan;14 Suppl 1:16-25 [PMID: 18835369]
  37. Cell. 2004 Jan 23;116(2):281-97 [PMID: 14744438]
  38. Nat Struct Mol Biol. 2014 Sep;21(9):825-32 [PMID: 25086740]
  39. J Mol Neurosci. 2013 Jun;50(2):291-7 [PMID: 23315173]
  40. Neurology. 2011 Jan 4;76(1):23-7 [PMID: 21205691]
  41. Stem Cells. 2009 Dec;27(12):3093-102 [PMID: 19816956]
  42. Mol Neurobiol. 2011 Dec;44(3):359-73 [PMID: 21969146]
  43. Neuroscience. 2013 May 15;238:218-29 [PMID: 23485811]
  44. Neurobiol Dis. 2014 Feb;62:508-20 [PMID: 24184920]
  45. Exp Neurol. 1997 May;145(1):93-103 [PMID: 9184113]
  46. PLoS One. 2013;8(1):e53464 [PMID: 23308228]
  47. EMBO J. 2000 Apr 17;19(8):1745-54 [PMID: 10775259]
  48. Eur J Neurosci. 2000 Jul;12(7):2333-44 [PMID: 10947812]
  49. Sci Rep. 2016 Feb 12;6:20969 [PMID: 26869208]
  50. Curr Opin Neurol. 2014 Apr;27(2):199-205 [PMID: 24553459]
  51. Front Cell Neurosci. 2013 Oct 04;7:172 [PMID: 24109432]
  52. Nat Struct Mol Biol. 2006 Dec;13(12):1102-7 [PMID: 17128271]
  53. Brain Res Mol Brain Res. 2000 Feb 22;75(2):248-58 [PMID: 10686345]
  54. Neurosci Lett. 2011 Jan 25;488(3):252-7 [PMID: 21094214]
  55. Epilepsia. 1996 Feb;37(2):198-207 [PMID: 8635431]
  56. J Neurosci Methods. 2008 Jul 30;172(2):143-57 [PMID: 18550176]
  57. Epilepsy Behav. 2008 May;12(4):540-6 [PMID: 18280210]
  58. Cell Death Dis. 2012 Mar 22;3:e287 [PMID: 22436728]
  59. Hippocampus. 2010 Apr;20(4):492-8 [PMID: 19557767]

Grants

  1. R01 NS056222/NINDS NIH HHS
  2. KL2 TR001083/NCATS NIH HHS
  3. R01 DK078424/NIDDK NIH HHS
  4. UL1 TR001085/NCATS NIH HHS
  5. R37 AI071068/NIAID NIH HHS

MeSH Term

Animals
Binding Sites
Computational Biology
Disease Models, Animal
Humans
Mice
MicroRNAs
Muscarinic Agonists
Nerve Growth Factors
Neurotrophin 3
Pilocarpine
Protein Biosynthesis
Protein Serine-Threonine Kinases
RNA, Messenger
Rats
Receptor, Transforming Growth Factor-beta Type II
Receptors, Transforming Growth Factor beta
Status Epilepticus
Time Factors
Up-Regulation

Chemicals

MIRN21 microRNA, human
MicroRNAs
Muscarinic Agonists
NTF3 protein, human
Nerve Growth Factors
Neurotrophin 3
RNA, Messenger
Receptors, Transforming Growth Factor beta
Pilocarpine
Protein Serine-Threonine Kinases
Receptor, Transforming Growth Factor-beta Type II

Word Cloud

Created with Highcharts 10.0.0miR-21followingpre-miR-21epilepticusSEbindingmaturemRNAstatusincreaseprecursorsiteTGFBR2NT-3vitromiR-21-mediatedmayreceptormiRNAmicroRNA-21MicroRNA-21consistentlyup-regulatedvariousneurologicaldisordersincludingepilepsyshowbiogenesisalteredpilocarpine-inducedratsdemonstrateenergeticallyfavorableoverlappingcompetes3'UTRcompetitioninfluencesrepressioncorrelatesdecreasePolysomeprofilingrevealsco-localizationribosomefractiontranslatingmRNAsU-87cellscurrentworksuggestspost-transcriptionallycounteractsuppressionpotentiallyleadprolongedTGF-βexpressionimpactingepileptogenesisstudysupportsratiopreimportantdeterminingregulatoryeffectsgeneIncreasedcancompetealtertranslationPilocarpinePre-miR-21RegulationStatusTGFβ2

Similar Articles

Cited By