Comparative genomics of 9 novel bacteriophages.

Casey Stamereilers, Lucy LeBlanc, Diane Yost, Penny S Amy, Philippos K Tsourkas
Author Information
  1. Casey Stamereilers: School of Life Sciences, University of Nevada Las Vegas , Las Vegas, NV, USA.
  2. Lucy LeBlanc: Section of Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas at Austin , Austin, TX, USA.
  3. Diane Yost: School of Life Sciences, University of Nevada Las Vegas , Las Vegas, NV, USA.
  4. Penny S Amy: School of Life Sciences, University of Nevada Las Vegas , Las Vegas, NV, USA.
  5. Philippos K Tsourkas: School of Life Sciences, University of Nevada Las Vegas , Las Vegas, NV, USA.

Abstract

American Foulbrood Disease, caused by the bacterium , is one of the most destructive diseases of the honeybee, . Our group recently published the sequences of 9 new phages with the ability to infect and lyse . Here, we characterize the genomes of these phages, compare them to each other and to other sequenced phages, and putatively identify protein function. The phage genomes are 38-45 kb in size and contain 68-86 genes, most of which appear to be unique to phages. We classify phages into 2 main clusters and one singleton based on nucleotide sequence identity. Three of the new phages show sequence similarity to other sequenced phages, while the remaining 6 do not. We identified functions for roughly half of the phage proteins, including structural, assembly, host lysis, DNA replication/metabolism, regulatory, and host-related functions. Structural and assembly proteins are highly conserved among our phages and are located at the start of the genome. DNA replication/metabolism, regulatory, and host-related proteins are located in the middle and end of the genome, and are not conserved, with many of these genes found in some of our phages but not others. All nine phages code for a conserved N-acetylmuramoyl-L-alanine amidase. Comparative analysis showed the phages use the "cohesive ends with 3' overhang" DNA packaging strategy. This work is the first in-depth study of phage genomics, and serves as a marker for future work in this area.

Keywords

References

  1. Genome Announc. 2015 Jun 18;3(3): [PMID: 26089405]
  2. Bacteriophage. 2015 Aug 12;5(4):e1080787 [PMID: 26904379]
  3. Bacteriophage. 2011 Mar;1(2):111-114 [PMID: 22334867]
  4. Nucleic Acids Res. 1999 Dec 1;27(23):4636-41 [PMID: 10556321]
  5. Bacteriophage. 2016 Jan 5;6(1):e1122698 [PMID: 27144085]
  6. Elife. 2015 Apr 28;4:e06416 [PMID: 25919952]
  7. BMC Bioinformatics. 2011 Oct 12;12:395 [PMID: 21991981]
  8. BMC Genomics. 2014 Aug 30;15:745 [PMID: 25174730]
  9. Adv Virus Res. 2012;83:299-365 [PMID: 22748813]
  10. Genome Announc. 2013 Sep 05;1(5): [PMID: 24009112]
  11. Appl Microbiol Biotechnol. 2013 May;97(10):4369-75 [PMID: 22832988]
  12. Appl Microbiol Biotechnol. 2010 Jun;87(1):87-97 [PMID: 20401479]
  13. Mol Syst Biol. 2011 Oct 11;7:539 [PMID: 21988835]
  14. J Mol Biol. 2010 Mar 19;397(1):119-43 [PMID: 20064525]
  15. Arch Microbiol. 2010 Jan;192(1):51-6 [PMID: 19967339]
  16. Nucleic Acids Res. 2009 Jan;37(Database issue):D205-10 [PMID: 18984618]
  17. J Invertebr Pathol. 2010 Jan;103 Suppl 1:S10-9 [PMID: 19909971]
  18. PLoS One. 2015 Jul 13;10(7):e0132095 [PMID: 26167894]
  19. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W451-4 [PMID: 15980510]
  20. Bioinformatics. 2012 Jun 15;28(12):1647-9 [PMID: 22543367]
  21. Appl Microbiol Biotechnol. 2007 Sep;76(3):513-9 [PMID: 17554535]
  22. Curr Opin Microbiol. 2005 Aug;8(4):451-8 [PMID: 16019256]
  23. J Invertebr Pathol. 1999 Nov;74(3):295-6 [PMID: 10534418]
  24. Nucleic Acids Res. 1998 Feb 15;26(4):1107-15 [PMID: 9461475]
  25. Genome Announc. 2015 Oct 15;3(5): [PMID: 26472825]
  26. J Gen Virol. 1984 Jun;65 ( Pt 6):1101-5 [PMID: 6726188]
  27. J Invertebr Pathol. 2000 Jan;75(1):95-6 [PMID: 10631065]
  28. Appl Environ Microbiol. 2015 Aug 15;81(16):5411-9 [PMID: 26048941]
  29. Nature. 2014 May 1;509(7498):S9 [PMID: 24784429]
  30. mBio. 2012 Oct 30;3(6): [PMID: 23111871]
  31. Microbiol Rev. 1992 Sep;56(3):430-81 [PMID: 1406491]
  32. J Insect Sci. 2015 Jul 01;15: [PMID: 26136497]
  33. Bioinformatics. 2007 Apr 15;23(8):1026-8 [PMID: 17309896]
  34. Future Microbiol. 2013 Jun;8(6):769-83 [PMID: 23701332]
  35. Acta Microbiol Virol Immunol (Sofiia). 1976;4:81-5 [PMID: 1007965]
  36. Curr Microbiol. 2012 Apr;64(4):343-8 [PMID: 22231453]
  37. J Invertebr Pathol. 1970 Mar;15(2):149-56 [PMID: 5435792]
  38. PLoS One. 2012;7(3):e34052 [PMID: 22470512]
  39. Nat Rev Microbiol. 2013 Feb;11(2):95-105 [PMID: 23268227]
  40. Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 [PMID: 7984417]

Word Cloud

Created with Highcharts 10.0.0phagesDNAphageproteinsconservedgenomicsAmericanFoulbroodone9newgenomessequencedgenessequencefunctionsassemblyreplication/metabolismregulatoryhost-relatedlocatedgenomeN-acetylmuramoyl-L-alanineamidaseComparativepackagingstrategyworkcomparativeDiseasecausedbacteriumdestructivediseaseshoneybeegrouprecentlypublishedsequencesabilityinfectlysecharacterizecompareputativelyidentifyproteinfunction38-45 kbsizecontain68-86appearuniqueclassify2mainclusterssingletonbasednucleotideidentityThreeshowsimilarityremaining6identifiedroughlyhalfincludingstructuralhostlysisStructuralhighlyamongstartmiddleendmanyfoundothersninecodeanalysisshoweduse"cohesiveends3'overhang"firstin-depthstudyservesmarkerfutureareanovelbacteriophagesPaenibacilluslarvaePhameratorbacteriophageproteomicsendolysinlargeterminasesiphoviridae

Similar Articles

Cited By