Dopaminergic inhibition of gonadotropin-releasing hormone neurons in the cichlid fish Astatotilapia burtoni.

Astra S Bryant, Anna K Greenwood, Scott A Juntti, Allie E Byrne, Russell D Fernald
Author Information
  1. Astra S Bryant: Department of Biology, Stanford University, Stanford, CA 94305, USA astra.bryant@gmail.com. ORCID
  2. Anna K Greenwood: Department of Biology, Stanford University, Stanford, CA 94305, USA.
  3. Scott A Juntti: Department of Biology, Stanford University, Stanford, CA 94305, USA.
  4. Allie E Byrne: Department of Biology, Stanford University, Stanford, CA 94305, USA.
  5. Russell D Fernald: Department of Biology, Stanford University, Stanford, CA 94305, USA.

Abstract

Dopamine regulates reproduction in part by modulating neuronal activity within the hypothalamic-pituitary-gonadal (HPG) axis. Previous studies suggested numerous mechanisms by which dopamine exerts inhibitory control over the HPG axis, ultimately changing the levels of sex steroids that regulate reproductive behaviors. However, it is not known whether these mechanisms are conserved across vertebrate species. In particular, it is unknown whether mechanisms underlying dopaminergic control of reproduction are shared between mammals and teleost fish. In mammals, dopamine directly inhibits gonadotropin-releasing hormone (GnRH1) hypothalamic neurons, the gatekeepers for activation of the HPG axis. Here, we demonstrate, for the first time in teleost fish, dopaminergic control of GnRH1 neurons via direct dopamine type-2-like receptor (D2R)-mediated inhibition within the hypothalamus. These results suggest that direct dopaminergic control of GnRH1 neurons via interactions in the hypothalamus is not exclusive to tetrapod reproductive control, but is likely conserved across vertebrate species.

Keywords

References

  1. Gen Comp Endocrinol. 1992 Jan;85(1):138-46 [PMID: 1348716]
  2. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8363-7 [PMID: 7667296]
  3. J Neuroendocrinol. 1993 Dec;5(6):705-9 [PMID: 8680445]
  4. Gen Comp Endocrinol. 2002 Jun 15;127(2):198-206 [PMID: 12383448]
  5. Biol Reprod. 2004 Sep;71(3):909-18 [PMID: 15140799]
  6. Endocrinology. 2016 Aug;157(8):3197-212 [PMID: 27359210]
  7. J Neurophysiol. 2006 Nov;96(5):2217-28 [PMID: 16885524]
  8. Exp Clin Endocrinol. 1984 Jul;84(1):7-12 [PMID: 6434335]
  9. Neuroendocrinology. 1992 Apr;55(4):434-43 [PMID: 1565209]
  10. Neurosci Lett. 1989 Jul 31;102(2-3):159-64 [PMID: 2573008]
  11. J Chem Neuroanat. 2014 Mar;56:13-34 [PMID: 24418093]
  12. Neurochem Res. 2000 Dec;25(12):1521-6 [PMID: 11152380]
  13. Nature. 2015 Sep 24;525(7570):519-22 [PMID: 26375004]
  14. Ann N Y Acad Sci. 2005 Apr;1040:9-21 [PMID: 15891002]
  15. Endocrinology. 2013 Jan;154(1):340-50 [PMID: 23239814]
  16. J Neurosci. 1991 Dec;11(12):3727-37 [PMID: 1683898]
  17. Gen Comp Endocrinol. 1991 Feb;81(2):256-67 [PMID: 2019399]
  18. Brain Res Bull. 1997;44(4):445-57 [PMID: 9370210]
  19. Endocr Res Commun. 1980;7(2):99-105 [PMID: 6997016]
  20. Brain Res Bull. 1988 Jan;20(1):49-58 [PMID: 2893658]
  21. Neuroendocrinology. 1988 Dec;48(6):591-602 [PMID: 2471942]
  22. J Clin Endocrinol Metab. 1983 May;56(5):889-92 [PMID: 6403569]
  23. Mol Pharmacol. 1996 Apr;49(4):656-61 [PMID: 8609893]
  24. J Endocrinol Invest. 1985 Aug;8(4):373-6 [PMID: 3905934]
  25. Endocrinology. 1989 Mar;124(3):1579-81 [PMID: 2563684]
  26. J Comp Neurol. 2011 Jan 1;519(1):75-92 [PMID: 21120929]
  27. Mol Cell Endocrinol. 1995 Mar;109(1):87-95 [PMID: 7789619]
  28. Proc Natl Acad Sci U S A. 2015 Mar 24;112(12):3805-10 [PMID: 25775522]
  29. Exp Brain Res. 1983;50(1):91-9 [PMID: 6139290]
  30. J Fish Biol. 2010 Jan;76(1):129-60 [PMID: 20738703]
  31. Endocr Rev. 2001 Feb;22(1):111-51 [PMID: 11159818]
  32. Cell Mol Neurobiol. 1995 Feb;15(1):165-76 [PMID: 7648607]
  33. J Neuroendocrinol. 2003 May;15(5):538-45 [PMID: 12694380]
  34. Adv Exp Med Biol. 2013;784:113-31 [PMID: 23550004]
  35. Neuroscience. 2009 Apr 10;159(4):1384-96 [PMID: 19409227]
  36. Cell Tissue Res. 1990 Mar;259(3):561-6 [PMID: 1969331]
  37. J Neurobiol. 1990 Dec;21(8):1180-8 [PMID: 2273399]
  38. Neuroendocrinology. 1992 Mar;55(3):290-300 [PMID: 1354335]
  39. Endocrinology. 2009 Mar;150(3):1377-92 [PMID: 18974275]
  40. J Chem Neuroanat. 1989 Nov-Dec;2(6):319-26 [PMID: 2482049]
  41. J Neuroendocrinol. 1998 Mar;10(3):175-86 [PMID: 9576605]
  42. Alcohol. 1994 Mar-Apr;11(2):105-12 [PMID: 8204196]
  43. Brain Res. 1981 Jun 29;215(1-2):375-81 [PMID: 6790125]
  44. Biol Sex Differ. 2015 Nov 09;6:23 [PMID: 26557978]
  45. J Neurosci. 2007 Sep 19;27(38):10153-64 [PMID: 17881521]

Grants

  1. R37 NS034950/NINDS NIH HHS
  2. R21 NS093277/NINDS NIH HHS
  3. R01 NS034950/NINDS NIH HHS
  4. R56 NS034950/NINDS NIH HHS
  5. F32 HD071755/NICHD NIH HHS

MeSH Term

Action Potentials
Animals
Cichlids
Dopamine
Female
Gonadotropin-Releasing Hormone
Male
Neurons
Preoptic Area
Receptors, Dopamine D1
Receptors, Dopamine D2
Sex Characteristics
Tyrosine 3-Monooxygenase

Chemicals

Receptors, Dopamine D1
Receptors, Dopamine D2
Gonadotropin-Releasing Hormone
Tyrosine 3-Monooxygenase
Dopamine

Word Cloud

Created with Highcharts 10.0.0controlHPGaxisneuronsmechanismsdopaminedopaminergicfishGnRH1Dopaminereproductionwithinreproductivewhetherconservedacrossvertebratespeciesmammalsteleostgonadotropin-releasinghormoneviadirectinhibitionhypothalamusregulatespartmodulatingneuronalactivityhypothalamic-pituitary-gonadalPreviousstudiessuggestednumerousexertsinhibitoryultimatelychanginglevelssexsteroidsregulatebehaviorsHoweverknownparticularunknownunderlyingshareddirectlyinhibitshypothalamicgatekeepersactivationdemonstratefirsttimetype-2-likereceptorD2R-mediatedresultssuggestinteractionsexclusivetetrapodlikelyDopaminergiccichlidAstatotilapiaburtoniGnRHHypothalamusReproduction

Similar Articles

Cited By