Factors Influencing the Efficacy of Aerobic Exercise for Improving Fitness and Walking Capacity After Stroke: A Meta-Analysis With Meta-Regression.

Pierce Boyne, Jeffrey Welge, Brett Kissela, Kari Dunning
Author Information
  1. Pierce Boyne: Department of Rehabilitation Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, Ohio; Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio. Electronic address: Pierce.Boyne@uc.edu.
  2. Jeffrey Welge: Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio; Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, Ohio.
  3. Brett Kissela: Department of Neurology and Rehabilitation Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio.
  4. Kari Dunning: Department of Rehabilitation Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, Ohio; Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio.

Abstract

OBJECTIVE: To assess the influence of dosing parameters and patient characteristics on the efficacy of aerobic exercise (AEX) poststroke.
DATA SOURCES: A systematic review was conducted using PubMed, MEDLINE, Cumulative Index of Nursing and Allied Health Literature, Physiotherapy Evidence Database, and Academic Search Complete.
STUDY SELECTION: Studies were selected that compared an AEX group with a nonaerobic control group among ambulatory persons with Stroke.
DATA EXTRACTION: Extracted outcome data included peak oxygen consumption (V˙opeak) during exercise testing, walking speed, and walking endurance (6-min walk test). Independent variables of interest were AEX mode (seated or walking), AEX intensity (moderate or vigorous), AEX volume (total hours), Stroke chronicity, and baseline outcome scores.
DATA SYNTHESIS: Significant between-study heterogeneity was confirmed for all outcomes. Pooled AEX effect size estimates (AEX group change minus control group change) from random effects models were V˙opeak, 2.2mL⋅kg⋅min (95% confidence interval [CI], 1.3-3.1mL⋅kg⋅min); walking speed, .06m/s (95% CI, .01-.11m/s); and 6-minute walk test distance, 29m (95% CI, 15-42m). In meta-regression, larger V˙opeak effect sizes were significantly associated with higher AEX intensity and higher baseline V˙opeak. Larger effect sizes for walking speed and the 6-minute walk test were significantly associated with a walking AEX mode. In contrast, seated AEX did not have a significant effect on walking outcomes.
CONCLUSIONS: AEX significantly improves aerobic capacity poststroke, but may need to be task specific to affect walking speed and endurance. Higher AEX intensity is associated with better outcomes. Future randomized studies are needed to confirm these results.

Keywords

References

  1. Am J Phys Med Rehabil. 2016 Mar;95(3):214-24 [PMID: 26544857]
  2. Arch Phys Med Rehabil. 2008 Mar;89(3):463-9 [PMID: 18295624]
  3. Stroke. 2013 Apr;44(4):1179-81 [PMID: 23471273]
  4. Neurorehabil Neural Repair. 2009 Nov;23 (9):879-85 [PMID: 19541916]
  5. Arch Phys Med Rehabil. 2011 Apr;92(4):611-9 [PMID: 21440707]
  6. J Rehabil Res Dev. 2011;48(3):267-75 [PMID: 21480101]
  7. Stroke. 2010 Dec;41(12 ):2913-7 [PMID: 20966405]
  8. BMC Neurol. 2007 Nov 08;7:39 [PMID: 17996052]
  9. Cochrane Database Syst Rev. 2013 Oct 21;(10 ):CD003316 [PMID: 24142492]
  10. J Neurol Phys Ther. 2011 Jun;35(2):82-9 [PMID: 21934363]
  11. Disabil Rehabil. 2012;34(19):1665-71 [PMID: 22376194]
  12. NeuroRehabilitation. 2011;28(2):85-90 [PMID: 21447908]
  13. Arch Phys Med Rehabil. 1995 May;76(5):406-12 [PMID: 7741609]
  14. Clin Rehabil. 2013 Jul;27(7):659-71 [PMID: 23503738]
  15. NeuroRehabilitation. 2013;32(2):327-35 [PMID: 23535796]
  16. Phys Ther. 2010 Feb;90(2):196-208 [PMID: 20022995]
  17. Stroke. 2010 Jan;41(1):129-35 [PMID: 19910547]
  18. Int J Clin Pract. 2009 Oct;63(10):1426-34 [PMID: 19769699]
  19. J Phys Ther Sci. 2014 Sep;26(9):1449-54 [PMID: 25276034]
  20. Neurorehabil Neural Repair. 2016 Jun;30(5):440-50 [PMID: 26338433]
  21. Clin Rehabil. 2004 Sep;18(6):640-51 [PMID: 15473116]
  22. J Speech Lang Hear Res. 2008 Feb;51(1):S225-39 [PMID: 18230848]
  23. Neurorehabil Neural Repair. 2012 Jan;26(1):85-95 [PMID: 21885867]
  24. Top Stroke Rehabil. 2013 Jul-Aug;20(4):317-30 [PMID: 23893831]
  25. Neurorehabil Neural Repair. 2013 Sep;27(7):644-53 [PMID: 23599221]
  26. J Neurol Phys Ther. 2015 Apr;39(2):95-102 [PMID: 25784587]
  27. Neurorehabil Neural Repair. 2010 Jul-Aug;24(6):567-74 [PMID: 20453154]
  28. J Stroke Cerebrovasc Dis. 2015 Nov;24(11):2539-46 [PMID: 26303787]
  29. Stroke. 2007 Oct;38(10):2752-8 [PMID: 17702957]
  30. Neurorehabil Neural Repair. 2013 Nov-Dec;27(9):775-88 [PMID: 23884014]
  31. Am Heart J. 2008 Aug;156(2):292-300 [PMID: 18657659]
  32. Ann Phys Rehabil Med. 2010 Dec;53(10):632-42 [PMID: 21036118]
  33. Stroke. 2008 Dec;39(12 ):3341-50 [PMID: 18757284]
  34. J Cardiopulm Rehabil Prev. 2012 Nov-Dec;32(6):327-50 [PMID: 23103476]
  35. Top Geriatr Rehabil. 2010;26(4):310-323 [PMID: 22287825]
  36. Stat Med. 2002 Jun 15;21(11):1559-73 [PMID: 12111920]
  37. J Eval Clin Pract. 2014 Aug;20(4):295-300 [PMID: 24798823]
  38. Neurorehabil Neural Repair. 2009 May;23 (4):398-406 [PMID: 19088223]
  39. Physiother Res Int. 2014 Sep;19(3):129-39 [PMID: 24375978]
  40. Arch Phys Med Rehabil. 2003 Dec;84(12 ):1780-5 [PMID: 14669183]
  41. Phys Ther. 2015 Jun;95(6):835-53 [PMID: 25573761]
  42. Ann Rehabil Med. 2013 Oct;37(5):619-27 [PMID: 24231752]
  43. J Rehabil Med. 2009 Feb;41(3):166-73 [PMID: 19229450]
  44. BMC Neurol. 2014 Aug 22;14 :167 [PMID: 25162455]
  45. Cerebrovasc Dis. 2013;35(1):7-22 [PMID: 23428993]
  46. Top Stroke Rehabil. 2012 Nov-Dec;19(6):463-70 [PMID: 23192710]
  47. Clin Rehabil. 2010 Nov;24(11):979-87 [PMID: 20719820]
  48. Stroke. 2011 Jul;42(7):1994-2000 [PMID: 21636819]
  49. Top Stroke Rehabil. 2011 Jul-Aug;18(4):293-307 [PMID: 21914594]
  50. Med Sci Sports Exerc. 2015 Mar;47(3):476-84 [PMID: 24977698]
  51. Arch Phys Med Rehabil. 2007 Jan;88(1):115-9 [PMID: 17207686]
  52. Stroke. 2005 Oct;36(10 ):2206-11 [PMID: 16151035]
  53. J Am Geriatr Soc. 2006 May;54(5):743-9 [PMID: 16696738]
  54. J Rehabil Res Dev. 2002 Jul-Aug;39(4):439-44 [PMID: 17638141]
  55. Arch Phys Med Rehabil. 2001 Feb;82(2):174-82 [PMID: 11239307]
  56. Arch Phys Med Rehabil. 2000 Apr;81(4):409-17 [PMID: 10768528]
  57. Neurorehabil Neural Repair. 2011 Feb;25(2):140-8 [PMID: 21051764]
  58. NeuroRehabilitation. 2007;22(4):267-72 [PMID: 17971616]
  59. J Rehabil Res Dev. 2001 Mar-Apr;38(2):245-55 [PMID: 11392657]
  60. Arch Phys Med Rehabil. 2002 Aug;83(8):1035-42 [PMID: 12161823]
  61. Stroke. 2014 Aug;45(8):2532-53 [PMID: 24846875]
  62. Arch Phys Med Rehabil. 2009 Mar;90(3):407-12 [PMID: 19254604]
  63. Lancet. 1999 Jul 17;354(9174):191-6 [PMID: 10421300]
  64. Phys Ther. 2013 Dec;93(12 ):1707-16 [PMID: 23907078]
  65. Neurorehabil Neural Repair. 2012 May;26(4):318-24 [PMID: 22086903]
  66. J Am Geriatr Soc. 2005 Oct;53(10 ):1667-74 [PMID: 16181164]
  67. Stroke. 2002 Mar;33(3):756-61 [PMID: 11872900]
  68. Clin Rehabil. 2008 Feb;22(2):125-33 [PMID: 18212034]
  69. Curr Neurol Neurosci Rep. 2015 ;15(2):519 [PMID: 25475494]
  70. Stroke. 1995 Jan;26(1):101-5 [PMID: 7839377]
  71. Am J Phys Med Rehabil. 2014 Jan;93(1):29-42 [PMID: 24355995]
  72. J Am Geriatr Soc. 2008 Jun;56(6):976-85 [PMID: 18422947]
  73. J Neurol Phys Ther. 2015 Jul;39(3):156-65 [PMID: 26050073]
  74. J Phys Ther Sci. 2013 Oct;25(10):1223-5 [PMID: 24259762]
  75. Am Heart J. 2009 Dec;158(6):1031-7 [PMID: 19958872]
  76. Arch Phys Med Rehabil. 2011 Oct;92 (10 ):1663-8 [PMID: 21872846]
  77. Aust J Physiother. 1997;43(3):173-180 [PMID: 11676685]
  78. Clin Rehabil. 2011 Apr;25(4):316-26 [PMID: 20921032]
  79. J Neuroeng Rehabil. 2006 Sep 29;3:23 [PMID: 17010203]
  80. Sports Med. 2010 Sep 1;40(9):765-801 [PMID: 20726622]
  81. Med Sci Monit. 2014 Dec 05;20:2543-9 [PMID: 25488849]
  82. Arch Phys Med Rehabil. 2004 Jun;85(6):870-4 [PMID: 15179638]
  83. BMC Neurol. 2012 Jun 22;12 :45 [PMID: 22727172]
  84. Arch Phys Med Rehabil. 2006 Jul;87(7):974-80 [PMID: 16813786]
  85. Int J Stroke. 2014 Oct;9(7):883-9 [PMID: 24148695]
  86. Arch Phys Med Rehabil. 2003 Nov;84(11):1609-14 [PMID: 14639559]

Grants

  1. KL2 TR001426/NCATS NIH HHS

MeSH Term

Exercise
Exercise Therapy
Humans
Oxygen Consumption
Physical Endurance
Physical Fitness
Stroke Rehabilitation
Time Factors

Word Cloud

Created with Highcharts 10.0.0AEXwalkinggroupV˙opeakspeedeffectDATAwalktestintensityoutcomes95%significantlyassociatedaerobicexercisepoststrokecontrolstrokeoutcomeendurancemodeseatedbaselinechangeCI6-minutesizeshigherExerciseOBJECTIVE:assessinfluencedosingparameterspatientcharacteristicsefficacySOURCES:systematicreviewconductedusingPubMedMEDLINECumulativeIndexNursingAlliedHealthLiteraturePhysiotherapyEvidenceDatabaseAcademicSearchCompleteSTUDYSELECTION:StudiesselectedcomparednonaerobicamongambulatorypersonsEXTRACTION:Extracteddataincludedpeakoxygenconsumptiontesting6-minIndependentvariablesinterestmoderatevigorousvolumetotalhourschronicityscoresSYNTHESIS:Significantbetween-studyheterogeneityconfirmedPooledsizeestimatesminusrandomeffectsmodels22mL⋅kg⋅minconfidenceinterval[CI]13-31mL⋅kg⋅min06m/s01-11m/sdistance29m15-42mmeta-regressionlargerLargercontrastsignificantCONCLUSIONS:improvescapacitymayneedtaskspecificaffectHigherbetterFuturerandomizedstudiesneededconfirmresultsFactorsInfluencingEfficacyAerobicImprovingFitnessWalkingCapacityStroke:Meta-AnalysisMeta-RegressionCardiovasculardeconditioningLocomotionRehabilitationStroke

Similar Articles

Cited By