Comparison of thermal traits of Polistes dominula and Polistes gallicus, two European paper wasps with strongly differing distribution ranges.

Helmut Kovac, Helmut Käfer, Iacopo Petrocelli, Anton Stabentheiner
Author Information
  1. Helmut Kovac: Institut für Zoologie, Karl-Franzens-Universität Graz, Universitätsplatz 2, 8010, Graz, Austria. helmut.kovac@uni-graz.at. ORCID
  2. Helmut Käfer: Institut für Zoologie, Karl-Franzens-Universität Graz, Universitätsplatz 2, 8010, Graz, Austria.
  3. Iacopo Petrocelli: Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy.
  4. Anton Stabentheiner: Institut für Zoologie, Karl-Franzens-Universität Graz, Universitätsplatz 2, 8010, Graz, Austria. anton.stabentheiner@uni-graz.at.

Abstract

The two paper wasps, Polistes dominula and Polistes gallicus, are related species with strongly differing distribution ranges. We investigated thermal tolerance traits (critical thermal limits and metabolic response to temperature) to gain knowledge about physiological adaptations to their local climate conditions and to get evidence for the reasons of P. dominula's successful dispersion. Body and ambient temperature measurements at the nests revealed behavioural adaptations to microclimate. The species differed clearly in critical thermal minimum (P. dominula -1.4 °C, P. gallicus -0.4 °C), but not significantly in critical thermal maximum of activity (P. dominula 47.1 °C, P. gallicus 47.6 °C). The metabolic response did not reveal clear adaptations to climate conditions. At low and high temperatures, the metabolic rate of P. dominula was higher, and at intermediate temperatures, we determined higher values in P. gallicus. However, the species exhibited remarkably differing thermoregulatory behaviour at the nest. On average, P. gallicus tolerated a thoracic temperature up to ~41 °C, whereas P. dominula already tried at ~37 °C to keep the thorax below ambient temperature. We suggest this to be an adaptation to the higher mean ambient temperature we measured at the nest during a breeding season. Although we determined for P. dominula a 0.5 °C larger thermal tolerance range, we do not presume this parameter to be solely responsible for the successful distribution of P. dominula. Additional factors, such as the thermal tolerance of the queens could limit the overwintering success of P. gallicus in a harsher climate.

Keywords

References

  1. Physiol Biochem Zool. 2009 Sep-Oct;82(5):495-503 [PMID: 19624273]
  2. J Therm Biol. 2016 Feb;56:113-21 [PMID: 26857985]
  3. J Insect Physiol. 2011 Jan;57(1):12-20 [PMID: 20969872]
  4. J Exp Biol. 2010 Jul 1;213(Pt 13):2209-18 [PMID: 20543119]
  5. Comp Biochem Physiol A Mol Integr Physiol. 2015 Dec;190:61-7 [PMID: 26384457]
  6. Evolution. 2001 May;55(5):1063-8 [PMID: 11430643]
  7. Glob Chang Biol. 2015 Jan;21(1):181-94 [PMID: 25155644]
  8. J Therm Biol. 2016 Aug;60:171-9 [PMID: 27503730]
  9. J Insect Physiol. 2006 Jan;52(1):29-50 [PMID: 16246360]
  10. J Insect Physiol. 2015 Jul;78:62-8 [PMID: 25935839]
  11. J Exp Biol. 2012 Aug 15;215(Pt 16):2891-7 [PMID: 22837463]
  12. J Insect Physiol. 2008 Jan;54(1):114-27 [PMID: 17889900]
  13. Cryo Letters. 2001 Mar-Apr;22(2):125-34 [PMID: 11788851]
  14. J Insect Physiol. 2011 Aug;57(8):1085-9 [PMID: 21510951]
  15. Comp Biochem Physiol B Biochem Mol Biol. 2002 Apr;131(4):587-602 [PMID: 11923075]
  16. Oecologia. 2014 Jan;174(1):45-54 [PMID: 24036933]
  17. J Exp Biol. 2004 May;207(Pt 11):1903-13 [PMID: 15107444]
  18. J Insect Physiol. 2003 Sep;49(9):881-9 [PMID: 16256690]
  19. J Exp Biol. 2010 Mar 15;213(6):870-80 [PMID: 20190112]
  20. Am J Trop Med Hyg. 2006 May;74(5):786-94 [PMID: 16687681]
  21. J Insect Physiol. 2007 Dec;53(12):1250-61 [PMID: 17707395]
  22. J Insect Physiol. 2009 Oct;55(10):959-66 [PMID: 19589341]
  23. J Insect Physiol. 1997 Jul;43(7):685-694 [PMID: 12769980]
  24. Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16228-33 [PMID: 22988106]
  25. J Insect Physiol. 2012 May;58(5):679-89 [PMID: 22326295]
  26. Physiol Biochem Zool. 2013 Jan-Feb;86(1):73-81 [PMID: 23303322]
  27. Proc Biol Sci. 2007 Dec 7;274(1628):2935-42 [PMID: 17878142]
  28. Am Nat. 2009 Nov;174(5):595-612 [PMID: 19788354]
  29. J Comp Physiol B. 2015 Aug;185(6):647-58 [PMID: 26135799]
  30. Ecology. 2014 Aug;95(8):2134-43 [PMID: 25230465]
  31. Thermochim Acta. 2012 Apr 20;534:77-86 [PMID: 22723718]
  32. J Exp Biol. 2004 Jun;207(Pt 13):2361-70 [PMID: 15159440]
  33. J Evol Biol. 2010 Nov;23(11):2484-93 [PMID: 20874849]
  34. J Exp Biol. 2011 Nov 15;214(Pt 22):3713-25 [PMID: 22031735]
  35. J Insect Physiol. 1999 Feb;45(2):183-190 [PMID: 12770387]

MeSH Term

Adaptation, Physiological
Animals
Basal Metabolism
Body Temperature
Carbon Dioxide
Climate
Female
Italy
Temperature
Wasps

Chemicals

Carbon Dioxide

Word Cloud

Created with Highcharts 10.0.0PdominulagallicusthermalPolistestemperaturespeciesdifferingdistributiontolerancecriticalmetabolicadaptationsclimateambienthighertwopaperwaspsstronglyrangestraitslimitsresponseconditionssuccessfulBody4 °C47temperaturesratedeterminednestrelatedinvestigatedgainknowledgephysiologicallocalgetevidencereasonsdominula'sdispersionmeasurementsnestsrevealedbehaviouralmicroclimatedifferedclearlyminimum-1-0significantlymaximumactivity1 °C6 °CrevealclearlowhighintermediatevaluesHoweverexhibitedremarkablythermoregulatorybehaviouraveragetoleratedthoracic~41 °Cwhereasalreadytried~37 °CkeepthoraxsuggestadaptationmeanmeasuredbreedingseasonAlthough05 °ClargerrangepresumeparametersolelyresponsibleAdditionalfactorsqueenslimitoverwinteringsuccessharsherComparisonEuropeanEnvironmentMetabolicThermal

Similar Articles

Cited By