An integrated feature ranking and selection framework for ADHD characterization.

Cao Xiao, Jesse Bledsoe, Shouyi Wang, Wanpracha Art Chaovalitwongse, Sonya Mehta, Margaret Semrud-Clikeman, Thomas Grabowski
Author Information
  1. Cao Xiao: University of Washington, Seattle, WA, USA. danicaxiao@gmail.com.
  2. Jesse Bledsoe: University of Washington, Seattle, WA, USA.
  3. Shouyi Wang: University of Texas, Arlington, Arlington, USA.
  4. Wanpracha Art Chaovalitwongse: University of Washington, Seattle, WA, USA.
  5. Sonya Mehta: University of Washington, Seattle, WA, USA.
  6. Margaret Semrud-Clikeman: University of Minnesota, Minneapolis, USA.
  7. Thomas Grabowski: University of Washington, Seattle, WA, USA.

Abstract

Today, diagnosis of attention deficit hyperactivity disorder (ADHD) still primarily relies on a series of subjective evaluations that highly rely on a doctor's experiences and intuitions from diagnostic interviews and observed behavior measures. An accurate and objective diagnosis of ADHD is still a challenge and leaves much to be desired. Many children and adults are inappropriately labeled with ADHD conditions, whereas many are left undiagnosed and untreated. Recent advances in neuroimaging studies have enabled us to search for both structural (e.g., cortical thickness, brain volume) and functional (functional connectivity) abnormalities that can potentially be used as new biomarkers of ADHD. However, structural and functional characteristics of neuroimaging data, especially magnetic resonance imaging (MRI), usually generate a large number of features. With a limited sample size, traditional machine learning techniques can be problematic to discover the true characteristic features of ADHD due to the significant issues of overfitting, computational burden, and interpretability of the model. There is an urgent need of efficient approaches to identify meaningful discriminative variables from a higher dimensional feature space when sample size is small compared with the number of features. To tackle this problem, this paper proposes a novel integrated feature ranking and selection framework that utilizes normalized brain cortical thickness features extracted from MRI data to discriminate ADHD subjects against healthy controls. The proposed framework combines information theoretic criteria and the least absolute shrinkage and selection operator (Lasso) method into a two-step feature selection process which is capable of selecting a sparse model while preserving the most informative features. The experimental results showed that the proposed framework generated the highest/comparable ADHD prediction accuracy compared with the state-of-the-art feature selection approaches with minimum number of features in the final model. The selected regions of interest in our model were consistent with recent brain-behavior studies of ADHD development, and thus confirmed the validity of the selected features by the proposed approach.

References

  1. Neuropsychologia. 1999 Jun;37(7):797-805 [PMID: 10408647]
  2. Biol Psychiatry. 1999 Jun 15;45(12):1542-52 [PMID: 10376114]
  3. J Cogn Neurosci. 2004 May;16(4):503-9 [PMID: 15165343]
  4. Am J Psychiatry. 2003 Jun;160(6):1061-70 [PMID: 12777263]
  5. J Abnorm Psychol. 2013 May;122(2):558-65 [PMID: 23713508]
  6. Am J Psychiatry. 1999 Jun;156(6):891-6 [PMID: 10360128]
  7. Behav Brain Res. 2002 Mar 10;130(1-2):29-36 [PMID: 11864715]
  8. PLoS One. 2013 Nov 19;8(11):e79476 [PMID: 24260229]
  9. Lancet. 1999 Dec 18-25;354(9196):2132-3 [PMID: 10609822]
  10. Biol Psychiatry. 2003 Dec 15;54(12):1465-8 [PMID: 14675812]
  11. Biol Psychiatry. 2005 Jun 1;57(11):1224-30 [PMID: 15949992]
  12. IEEE Trans Neural Netw. 1994;5(4):537-50 [PMID: 18267827]
  13. Cereb Cortex. 2007 Jun;17(6):1364-75 [PMID: 16920883]
  14. Annu Rev Neurosci. 1990;13:25-42 [PMID: 2183676]
  15. Trends Cogn Sci. 2000 Jun;4(6):215-222 [PMID: 10827444]
  16. Arch Gen Psychiatry. 2001 Mar;58(3):289-95 [PMID: 11231836]
  17. IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226-38 [PMID: 16119262]
  18. Int J Psychophysiol. 2014 Jul;93(1):162-6 [PMID: 23361114]
  19. Clin EEG Neurosci. 2010 Jan;41(1):1-10 [PMID: 20307009]
  20. Neuron. 2012 Jan 12;73(1):8-22 [PMID: 22243743]
  21. JAMA. 2002 Oct 9;288(14):1740-8 [PMID: 12365958]
  22. Neuroimage. 2006 Jul 1;31(3):968-80 [PMID: 16530430]
  23. J Am Acad Child Adolesc Psychiatry. 2007 Aug;46(8):1015-27 [PMID: 17667480]
  24. Med Phys. 2001 Dec;28(12):2394-402 [PMID: 11797941]
  25. J Am Acad Child Adolesc Psychiatry. 2002 Jan;41(1):59-66 [PMID: 11800208]
  26. Am J Psychiatry. 2006 Jun;163(6):1052-60 [PMID: 16741206]
  27. Epilepsia. 2003 Sep;44(9):1241-4 [PMID: 12919398]
  28. Behav Brain Res. 1998 Jul;94(1):1-10 [PMID: 9708834]
  29. J Learn Disabil. 1991 Mar;24(3):141-6 [PMID: 2026955]
  30. Biol Psychiatry. 2011 Jun 15;69(12):1160-7 [PMID: 21489409]
  31. J Cogn Neurosci. 1993 Spring;5(2):162-76 [PMID: 23972151]
  32. Trends Cogn Sci. 2012 Jan;16(1):17-26 [PMID: 22169776]
  33. J Am Acad Child Adolesc Psychiatry. 2005 Apr;44(4):377-84 [PMID: 15782085]
  34. Arch Gen Psychiatry. 1996 Jul;53(7):607-16 [PMID: 8660127]
  35. J Am Acad Child Adolesc Psychiatry. 2004 Mar;43(3):332-40 [PMID: 15076267]
  36. Psychol Bull. 1997 Jan;121(1):65-94 [PMID: 9000892]
  37. Neuroimage. 1999 Feb;9(2):179-94 [PMID: 9931268]
  38. Am J Psychiatry. 1994 Dec;151(12):1791-6 [PMID: 7977887]
  39. Mol Psychiatry. 1998 Jan;3(1):38-41 [PMID: 9491811]
  40. Front Syst Neurosci. 2012 Aug 06;6:58 [PMID: 22888314]

Grants

  1. U54 HD083091/NICHD NIH HHS

Word Cloud

Created with Highcharts 10.0.0ADHDfeaturesfeatureselectionmodelframeworkfunctionalnumberproposeddiagnosisstillneuroimagingstudiesstructuralcorticalthicknessbraincandataMRIsamplesizeapproachescomparedintegratedrankingselectedTodayattentiondeficithyperactivitydisorderprimarilyreliesseriessubjectiveevaluationshighlyrelydoctor'sexperiencesintuitionsdiagnosticinterviewsobservedbehaviormeasuresaccurateobjectivechallengeleavesmuchdesiredManychildrenadultsinappropriatelylabeledconditionswhereasmanyleftundiagnoseduntreatedRecentadvancesenabledussearchegvolumeconnectivityabnormalitiespotentiallyusednewbiomarkersHowevercharacteristicsespeciallymagneticresonanceimagingusuallygeneratelargelimitedtraditionalmachinelearningtechniquesproblematicdiscovertruecharacteristicduesignificantissuesoverfittingcomputationalburdeninterpretabilityurgentneedefficientidentifymeaningfuldiscriminativevariableshigherdimensionalspacesmalltackleproblempaperproposesnovelutilizesnormalizedextracteddiscriminatesubjectshealthycontrolscombinesinformationtheoreticcriterialeastabsoluteshrinkageoperatorLassomethodtwo-stepprocesscapableselectingsparsepreservinginformativeexperimentalresultsshowedgeneratedhighest/comparablepredictionaccuracystate-of-the-artminimumfinalregionsinterestconsistentrecentbrain-behaviordevelopmentthusconfirmedvalidityapproachcharacterization

Similar Articles

Cited By