Age and Diet Affect Genetically Separable Secondary Injuries that Cause Acute Mortality Following Traumatic Brain Injury in Drosophila.

Rebeccah J Katzenberger, Barry Ganetzky, David A Wassarman
Author Information
  1. Rebeccah J Katzenberger: Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin 53706.
  2. Barry Ganetzky: Department of Genetics, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Wisconsin 53706 ganetzky@wisc.edu dawassarman@wisc.edu.
  3. David A Wassarman: Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin 53706 ganetzky@wisc.edu dawassarman@wisc.edu.

Abstract

Outcomes of traumatic brain injury (TBI) vary because of differences in primary and secondary injuries. Primary injuries occur at the time of a traumatic event, whereas secondary injuries occur later as a result of cellular and molecular events activated in the brain and other tissues by primary injuries. We used a Drosophila melanogaster TBI model to investigate secondary injuries that cause acute mortality. By analyzing mortality percentage within 24 hr of primary injuries, we previously found that age at the time of primary injuries and diet afterward affect the severity of secondary injuries. Here, we show that secondary injuries peaked in activity 1-8 hr after primary injuries. Additionally, we demonstrate that age and diet activated distinct secondary injuries in a genotype-specific manner, and that concurrent activation of age- and diet-regulated secondary injuries synergistically increased mortality. To identify genes involved in secondary injuries that cause mortality, we compared genome-wide mRNA expression profiles of uninjured and injured flies under age and diet conditions that had different mortalities. During the peak period of secondary injuries, innate immune response genes were the predominant class of genes that changed expression. Furthermore, age and diet affected the magnitude of the change in expression of some innate immune response genes, suggesting roles for these genes in inhibiting secondary injuries that cause mortality. Our results indicate that the complexity of TBI outcomes is due in part to distinct, genetically controlled, age- and diet-regulated mechanisms that promote secondary injuries and that involve a subset of innate immune response genes.

Keywords

References

  1. Annu Rev Cell Dev Biol. 2015;31:497-522 [PMID: 26393775]
  2. Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12590-5 [PMID: 11606746]
  3. J Neurotrauma. 2003 Oct;20(10):907-27 [PMID: 14588109]
  4. Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):E4152-9 [PMID: 24127584]
  5. Metab Brain Dis. 2015 Oct;30(5):1093-104 [PMID: 25624154]
  6. Brain Inj. 2011;25(4):365-9 [PMID: 21314275]
  7. Nature. 2012 Feb 08;482(7384):173-8 [PMID: 22318601]
  8. Fly (Austin). 2015 ;9(2):68-74 [PMID: 26291482]
  9. PLoS One. 2016 Jul 18;11(7):e0159442 [PMID: 27427961]
  10. Neurosurgery. 2012 Oct;71(4):885-91 [PMID: 22743360]
  11. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  12. Neurorehabil Neural Repair. 2016 Jan;30(1):83-93 [PMID: 25979196]
  13. J Neurotrauma. 2013 May 1;30(9):752-64 [PMID: 22913729]
  14. Neurocrit Care. 2009 Dec;11(3):311-6 [PMID: 19636972]
  15. Arch Phys Med Rehabil. 2013 Nov;94(11):2203-9 [PMID: 23872079]
  16. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  17. J Neurotrauma. 2013 Aug 15;30(16):1415-25 [PMID: 23540392]
  18. Prog Neurol Surg. 2014;28:50-62 [PMID: 24923392]
  19. PLoS Genet. 2016 May 27;12(5):e1006089 [PMID: 27231872]
  20. Front Neurol. 2013 Mar 04;4:18 [PMID: 23459929]
  21. Int J Mol Sci. 2016 Feb 06;17 (2):216 [PMID: 26861311]
  22. Methods Find Exp Clin Pharmacol. 1996 Mar;18(2):105-15 [PMID: 8740242]
  23. Elife. 2015 Mar 05;4:null [PMID: 25742603]
  24. J Neurotrauma. 2011 Sep;28(9):1813-25 [PMID: 21635175]
  25. Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):698-703 [PMID: 26739560]
  26. Curr Alzheimer Res. 2016;13(7):730-8 [PMID: 26899581]
  27. BMC Res Notes. 2010 Jul 02;3:183 [PMID: 20598141]
  28. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  29. Mol Immunol. 2007 Apr;44(10):2541-8 [PMID: 17287021]
  30. Brain Inj. 2014;28(12 ):1491-503 [PMID: 25111457]
  31. J Neurosci Rural Pract. 2012 May;3(2):131-5 [PMID: 22865961]
  32. J Neurosci Res. 2008 Jun;86(8):1812-22 [PMID: 18241053]
  33. EMBO J. 2002 Jun 3;21(11):2568-79 [PMID: 12032070]
  34. Nat Rev Neurol. 2013 Apr;9(4):211-21 [PMID: 23458973]
  35. J Vis Exp. 2015 Jun 30;(100):e52905 [PMID: 26168076]
  36. Annu Rev Immunol. 2007;25:697-743 [PMID: 17201680]
  37. Inflamm Res. 2014 Feb;63(2):109-15 [PMID: 24146067]
  38. Cell. 2012 Sep 28;151(1):123-37 [PMID: 23021220]
  39. Neurorehabil Neural Repair. 2015 Mar-Apr;29(3):234-46 [PMID: 25063686]
  40. Immunity. 2006 Apr;24(4):463-73 [PMID: 16618604]
  41. BMC Genomics. 2013 Apr 25;14:282 [PMID: 23617241]
  42. Biochem Biophys Res Commun. 2001 Jun 22;284(4):998-1003 [PMID: 11409894]
  43. Brain Behav Immun. 2014 Nov;42:232-45 [PMID: 25063708]
  44. J Neurotrauma. 2009 Aug;26(8):1353-9 [PMID: 19344293]
  45. PLoS Pathog. 2015 Apr 27;11(4):e1004876 [PMID: 25915418]
  46. J Biol Chem. 2009 Aug 28;284(35):23558-63 [PMID: 19574227]
  47. J Lipid Res. 2014 Dec;55(12):2450-7 [PMID: 24721741]
  48. J Trauma Acute Care Surg. 2015 Aug;79(2):289-94 [PMID: 26218699]
  49. Ann Surg. 2014 Oct;260(4):698-703; discussion 703-5 [PMID: 25203887]
  50. Neurosurg Focus. 2010 Jan;28(1):E9 [PMID: 20043724]
  51. J Neurosurg. 2003 Oct;99(4):666-73 [PMID: 14567601]
  52. Front Biosci (Landmark Ed). 2009 Jan 01;14:3795-813 [PMID: 19273311]
  53. Dis Model Mech. 2012 Jan;5(1):48-61 [PMID: 21979942]
  54. J Neurosci Res. 2005 Nov 1;82(3):413-20 [PMID: 16180224]
  55. Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):E656-64 [PMID: 22355133]
  56. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14614-9 [PMID: 9405661]
  57. Brain Res. 2013 Mar 7;1499:109-20 [PMID: 23276495]
  58. Neuron. 2015 Jul 1;87(1):47-62 [PMID: 26139369]
  59. Immunol Rev. 2004 Apr;198:72-82 [PMID: 15199955]
  60. PLoS Genet. 2014 Sep 25;10(9):e1004659 [PMID: 25254641]
  61. Curr Opin Genet Dev. 2011 Apr;21(2):219-24 [PMID: 21420851]
  62. J Neurotrauma. 2009 Jul;26(7):1111-21 [PMID: 19275468]
  63. Nat Rev Immunol. 2009 Jun;9(6):429-39 [PMID: 19461673]
  64. J Trauma. 2008 Jan;64(1):131-7; discussion 137-8 [PMID: 18188111]
  65. J Trauma. 2002 Aug;53(2):219-23; discussion 223-4 [PMID: 12169925]
  66. Int J Endocrinol. 2015;2015:719476 [PMID: 26074963]
  67. J Neurotrauma. 2014 Feb 15;31(4):346-57 [PMID: 24313291]
  68. PLoS One. 2013;8(3):e58838 [PMID: 23527035]
  69. Neurobiol Dis. 2015 Jan;73:1-11 [PMID: 25270295]
  70. J Neurotrauma. 2010 Aug;27(8):1529-40 [PMID: 20504161]
  71. Mediators Inflamm. 2012;2012:356494 [PMID: 22701273]
  72. Crit Care. 2016 Jun 21;20(1):148 [PMID: 27323708]
  73. Neurobiol Dis. 2014 Oct;70:108-16 [PMID: 24983210]
  74. Mol Biol Cell. 2013 Sep;24(18):3000-9 [PMID: 23885117]
  75. Dev Comp Immunol. 2014 Jan;42(1):36-41 [PMID: 23796791]
  76. BMC Bioinformatics. 2014 Jun 12;15:182 [PMID: 24925680]
  77. Neuroscience. 2000;99(1):93-105 [PMID: 10924955]
  78. Nat Rev Immunol. 2007 Nov;7(11):862-74 [PMID: 17948019]
  79. Genes Cells. 2006 Apr;11(4):397-407 [PMID: 16611243]

Grants

  1. R21 NS091893/NINDS NIH HHS

MeSH Term

Age Factors
Animals
Animals, Genetically Modified
Brain Injuries, Traumatic
Diet
Disease Models, Animal
Drosophila
Female
Gene Expression Regulation
Genetic Background
Genetic Predisposition to Disease
Immunity, Innate
Male
Mortality
Time Factors
Transcription, Genetic

Word Cloud

Created with Highcharts 10.0.0injuriessecondarygenesprimarymortalityTBIagedietexpressioninnateimmuneresponseDrosophilacausetraumaticbrainoccurtimeactivatedhrdistinctage-diet-regulatedOutcomesinjuryvarydifferencesPrimaryeventwhereaslaterresultcellularmoleculareventstissuesusedmelanogastermodelinvestigateacuteanalyzingpercentagewithin24previouslyfoundafterwardaffectseverityshowpeakedactivity1-8Additionallydemonstrategenotype-specificmannerconcurrentactivationsynergisticallyincreasedidentifyinvolvedcomparedgenome-widemRNAprofilesuninjuredinjuredfliesconditionsdifferentmortalitiespeakperiodpredominantclasschangedFurthermoreaffectedmagnitudechangesuggestingrolesinhibitingresultsindicatecomplexityoutcomesduepartgeneticallycontrolledmechanismspromoteinvolvesubsetAgeDietAffectGeneticallySeparableSecondaryInjuriesCauseAcuteMortalityFollowingTraumaticBrainInjuryGeneticReferencePanelRNA-seqgenehyperglycemiarepetitive

Similar Articles

Cited By