A transcriptomic scan for potential candidate genes involved in osmoregulation in an obligate freshwater palaemonid prawn ().

Azam Moshtaghi, Md Lifat Rahi, Viet Tuan Nguyen, Peter B Mather, David A Hurwood
Author Information
  1. Azam Moshtaghi: Science and Engineering Faculty, Queensland University of Technology , Brisbane , Queensland , Australia.
  2. Md Lifat Rahi: Science and Engineering Faculty, Queensland University of Technology , Brisbane , Queensland , Australia.
  3. Viet Tuan Nguyen: School of Science and Engineering, University of the Sunshine Coast , Sippy Downs , Queensland , Australia.
  4. Peter B Mather: Science and Engineering Faculty, Queensland University of Technology , Brisbane , Queensland , Australia.
  5. David A Hurwood: Science and Engineering Faculty, Queensland University of Technology , Brisbane , Queensland , Australia.

Abstract

BACKGROUND: Understanding the genomic basis of osmoregulation (candidate genes and/or molecular mechanisms controlling the phenotype) addresses one of the fundamental questions in evolutionary ecology. Species distributions and adaptive radiations are thought to be controlled by environmental salinity levels, and efficient osmoregulatory (ionic balance) ability is the main mechanism to overcome the problems related to environmental salinity gradients.
METHODS: To better understand how osmoregulatory performance in freshwater (FW) crustaceans allow individuals to acclimate and adapt to raised salinity conditions, here we (i), reviewed the literature on genes that have been identified to be associated with osmoregulation in FW crustaceans, and (ii), performed a transcriptomic analysis using cDNA libraries developed from mRNA isolated from three important osmoregulatory tissues (gill, antennal gland, hepatopancreas) and total mRNA from post larvae taken from the freshwater prawn, using Illumina deep sequencing technology. This species was targeted because it can complete its life cycle totally in freshwater but, like many sp., can also tolerate brackish water conditions and hence should have genes associated with tolerance of both FW and saline conditions.
RESULTS: We obtained between 55.4 and 65.2 million Illumina read pairs from four cDNA libraries. Overall, paired end sequences assembled into a total of 125,196 non-redundant contigs (≥200 bp) with an N50 length of 2,282 bp and an average contig length of 968 bp. Transcriptomic analysis of identified 32 different gene families that were potentially involved with osmoregulatory capacity. A total of 32,597 transcripts were specified with gene ontology (GO) terms identified on the basis of GO categories. Abundance estimation of expressed genes based on TPM (transcript per million) ≥20 showed 1625 transcripts commonly expressed in all four libraries. Among the top 10 genes expressed in four tissue libraries associated with osmoregulation, arginine kinase and Na+/K+- ATPase showed the highest transcript copy number with 7098 and 660, respectively in gill which is considered to be the most important organ involved in osmoregulation.
DISCUSSION: The current study provides the first broad transcriptome from using next generation sequencing and identifies potential candidate genes involved in salinity tolerance and osmoregulation that can provide a foundation for investigating osmoregulatory capacity in a wide variety of freshwater crustaceans.

Keywords

References

  1. Gene. 2015 Feb 15;557(1):28-34 [PMID: 25479010]
  2. Comp Biochem Physiol A Mol Integr Physiol. 2007 Jan;146(1):40-6 [PMID: 17084099]
  3. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  4. ScientificWorldJournal. 2012;2012:149361 [PMID: 22619594]
  5. Mar Genomics. 2015 Aug;22:11-3 [PMID: 25797793]
  6. Fish Shellfish Immunol. 2011 Jan;30(1):234-40 [PMID: 20974259]
  7. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  8. Fish Physiol Biochem. 2014 Dec;40(6):1839-48 [PMID: 25139325]
  9. Genome Biol. 2014;15(11):509 [PMID: 25398208]
  10. Comp Biochem Physiol A Mol Integr Physiol. 2008 Nov;151(3):272-304 [PMID: 17604200]
  11. Comp Biochem Physiol A Mol Integr Physiol. 2003 Oct;136(2):243-58 [PMID: 14511744]
  12. BMC Genomics. 2012 Nov 05;13:595 [PMID: 23127152]
  13. J Anat. 2000 Aug;197 ( Pt 2):239-46 [PMID: 11005716]
  14. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W293-7 [PMID: 16845012]
  15. PLoS One. 2013 Dec 03;8(12):e82155 [PMID: 24312639]
  16. J Exp Biol. 2004 Jan;207(Pt 2):325-36 [PMID: 14668316]
  17. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  18. Nat Protoc. 2013 Aug;8(8):1494-512 [PMID: 23845962]
  19. Fish Shellfish Immunol. 2015 Feb;42(2):400-7 [PMID: 25463292]
  20. Comp Biochem Physiol Part D Genomics Proteomics. 2011 Jun;6(2):115-25 [PMID: 21220218]
  21. J Exp Biol. 2006 Aug;209(Pt 15):2813-27 [PMID: 16857865]
  22. Comp Biochem Physiol A Mol Integr Physiol. 2009 Feb;152(2):225-33 [PMID: 18950726]
  23. Fish Shellfish Immunol. 2000 May;10(4):387-91 [PMID: 10938749]
  24. Comp Biochem Physiol Part D Genomics Proteomics. 2015 Mar;13:1-9 [PMID: 25460100]
  25. J Exp Biol. 2001 Jan;204(Pt 1):25-37 [PMID: 11104708]
  26. Comp Biochem Physiol A Mol Integr Physiol. 2003 Jun;135(2):195-214 [PMID: 12781821]
  27. Comp Biochem Physiol Part D Genomics Proteomics. 2014 Jun;10:52-63 [PMID: 24841517]
  28. Comp Biochem Physiol A Mol Integr Physiol. 2003 Nov;136(3):479-98 [PMID: 14613779]
  29. Comp Biochem Physiol A Mol Integr Physiol. 2007 Jun;147(2):404-11 [PMID: 17350299]
  30. Fish Shellfish Immunol. 2014 Jan;36(1):164-71 [PMID: 24188748]
  31. J Exp Biol. 2000 Aug;203(Pt 16):2395-404 [PMID: 10903154]
  32. J Exp Biol. 2005 Oct;208(Pt 19):3627-36 [PMID: 16169940]
  33. J Exp Biol. 2007 Feb;210(Pt 4):620-7 [PMID: 17267648]
  34. Biochem Cell Biol. 2001;79(6):765-72 [PMID: 11800017]
  35. PLoS One. 2013;8(3):e59534 [PMID: 23555698]
  36. Bioinformatics. 2007 May 1;23(9):1061-7 [PMID: 17332020]
  37. Bull Environ Contam Toxicol. 2013 Mar;90(3):387-90 [PMID: 23275976]
  38. PLoS One. 2013 Oct 28;8(10):e76840 [PMID: 24204682]
  39. Comp Biochem Physiol B Biochem Mol Biol. 2003 Jul;135(3):521-31 [PMID: 12831772]
  40. Fish Shellfish Immunol. 2013 Dec;35(6):1957-68 [PMID: 24436977]
  41. Gene. 2015 Mar 1;558(1):88-98 [PMID: 25542812]
  42. BMC Bioinformatics. 2009 Dec 15;10:421 [PMID: 20003500]
  43. Fish Shellfish Immunol. 2009 Mar;26(3):553-8 [PMID: 19239924]
  44. Int J Biochem Cell Biol. 2005 Feb;37(2):260-6 [PMID: 15474971]
  45. PLoS One. 2011;6(12):e27938 [PMID: 22174756]

Word Cloud

Created with Highcharts 10.0.0genesosmoregulationosmoregulatoryfreshwatersalinitylibrariesinvolvedcandidateFWcrustaceansconditionsidentifiedassociatedusingtotalIlluminacanfourbpexpressedbasisenvironmentaltranscriptomicanalysiscDNAmRNAimportantgillglandprawnsequencingtolerance2millionlength32genecapacitytranscriptsGOtranscriptshowedpotentialBACKGROUND:Understandinggenomicand/ormolecularmechanismscontrollingphenotypeaddressesonefundamentalquestionsevolutionaryecologySpeciesdistributionsadaptiveradiationsthoughtcontrolledlevelsefficientionicbalanceabilitymainmechanismovercomeproblemsrelatedgradientsMETHODS:betterunderstandperformanceallowindividualsacclimateadaptraisedreviewedliteratureiiperformeddevelopedisolatedthreetissuesantennalhepatopancreaspostlarvaetakendeeptechnologyspeciestargetedcompletelifecycletotallylikemanyspalsotoleratebrackishwaterhencesalineRESULTS:obtained55465readpairsOverallpairedendsequencesassembled125196non-redundantcontigs≥200N50282averagecontig968Transcriptomicdifferentfamiliespotentially597specifiedontologytermscategoriesAbundanceestimationbasedTPMper≥201625commonlyAmongtop10tissueargininekinaseNa+/K+-ATPasehighestcopynumber7098660respectivelyconsideredorganDISCUSSION:currentstudyprovidesfirstbroadtranscriptomenextgenerationidentifiesprovidefoundationinvestigatingwidevarietyscanobligatepalaemonidAntennalGillHepatopancreasMacrobrachiumaustralienseOsmoregulationTranscriptome

Similar Articles

Cited By