Brain Changes in Responders vs. Non-Responders in Chronic Migraine: Markers of Disease Reversal.

Catherine S Hubbard, Lino Becerra, Jonathan H Smith, Justin M DeLange, Ryan M Smith, David F Black, Kirk M Welker, Rami Burstein, Fred M Cutrer, David Borsook
Author Information
  1. Catherine S Hubbard: Center for Pain and the Brain, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's HospitalBoston, MA, USA; Department of Anaesthesia, Harvard Medical SchoolBoston, MA, USA.
  2. Lino Becerra: Center for Pain and the Brain, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's HospitalBoston, MA, USA; Department of Anaesthesia, Harvard Medical SchoolBoston, MA, USA.
  3. Jonathan H Smith: Department of Neurology, Mayo Clinic Rochester, MN, USA.
  4. Justin M DeLange: Department of Neurology, Mayo Clinic Rochester, MN, USA.
  5. Ryan M Smith: Department of Neurology, Mayo Clinic Rochester, MN, USA.
  6. David F Black: Department of Neurology, Mayo Clinic Rochester, MN, USA.
  7. Kirk M Welker: Department of Neurology, Mayo Clinic Rochester, MN, USA.
  8. Rami Burstein: Department of Anaesthesia, Harvard Medical SchoolBoston, MA, USA; Department of Anaesthesia, Beth Israel Deaconess Medical CenterBoston, MA, USA.
  9. Fred M Cutrer: Department of Neurology, Mayo Clinic Rochester, MN, USA.
  10. David Borsook: Center for Pain and the Brain, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's HospitalBoston, MA, USA; Department of Anaesthesia, Harvard Medical SchoolBoston, MA, USA.

Abstract

The aim of this study was to identify structural and functional brain changes that accompanied the transition from chronic (CM; ≥15 headache days/month) to episodic (EM; <15 headache days/month) migraine following prophylactic treatment with onabotulinumtoxinA (BoNT-A). Specifically, we examined whether CM patients responsive to prophylaxis (responders; = 11), as evidenced by a reversal in disease status (defined by at least a 50% reduction in migraine frequency and <15 headache days/month), compared to CM patients whose migraine frequency remained unchanged (non-responders; = 12), showed differences in cortical thickness using surface-based morphometry. We also investigated whether areas showing group differences in cortical thickness displayed altered resting-state functional connectivity (RS-FC) using seed-to-voxel analyses. Migraine characteristics measured across groups included disease duration, pain intensity and headache frequency. Patient reports of headache frequency over the 4 weeks prior to (pre-treatment) and following (post-treatment) prophylaxis were compared (post minus pre) and this measure served as the clinical endpoint that determined group assignment. All patients were scanned within 2 weeks of the post-treatment visit. Results revealed that responders showed significant cortical thickening in the right primary somatosensory cortex (SI) and anterior insula (aINS), and left superior temporal gyrus (STG) and pars opercularis (ParsOp) compared to non-responders. In addition, disease duration was negatively correlated with cortical thickness in fronto-parietal and temporo-occipital regions in responders but not non-responders, with the exception of the primary motor cortex (MI) that showed the opposite pattern; disease duration was positively associated with MI cortical thickness in responders versus non-responders. Our seed-based RS-FC analyses revealed anti-correlations between the SI seed and lateral occipital (LOC) and dorsomedial prefrontal cortices (DMPFC) in responders, whereas non-responders showed increased connectivity between the ParsOp seed and LOC. Overall, our findings revealed distinct morphometric and functional brain changes in CM patients that reverted to EM following prophylactic treatment compared to CM patients that showed no change in disease status. Elucidating the CNS changes involved in disease reversal may be critical to discovering interventions that prevent or slow the progression of CM. Such changes may aid in the evaluation of treatments as well as provide markers for disease "de-chronification".

Keywords

References

  1. J Gen Intern Med. 2001 Sep;16(9):606-13 [PMID: 11556941]
  2. Toxicon. 2009 Oct;54(5):624-7 [PMID: 19344670]
  3. J Neurosci. 2014 Mar 12;34(11):3969-75 [PMID: 24623774]
  4. Mol Pain. 2011 Sep 21;7:71 [PMID: 21936901]
  5. Cephalalgia. 2002 Feb;22(1):62-5 [PMID: 11993615]
  6. Neuroimage. 2007 Aug 1;37(1):90-101 [PMID: 17560126]
  7. J Cogn Neurosci. 2007 Jun;19(6):935-44 [PMID: 17536964]
  8. J Exp Psychol Anim Behav Process. 2009 Jul;35(3):382-93 [PMID: 19594283]
  9. PLoS One. 2015 Sep 15;10(9):e0137971 [PMID: 26372461]
  10. Drugs. 2012 Apr 16;72(6):825-45 [PMID: 22468643]
  11. Cephalalgia. 2006 Jun;26(6):742-6 [PMID: 16686915]
  12. Neuroimage. 2012 Jan 16;59(2):1420-8 [PMID: 21889994]
  13. Neuroimage. 1999 Feb;9(2):195-207 [PMID: 9931269]
  14. eNeuro. 2014 Dec 30;1(1):e20.14 [PMID: 25893216]
  15. Pediatr Neurol. 2014 Sep;51(3):317-20 [PMID: 25160537]
  16. J Cogn Neurosci. 2011 Dec;23(12):4122-37 [PMID: 21736460]
  17. Ann Neurol. 2016 Jun;79(6):1000-13 [PMID: 27091721]
  18. Cephalalgia. 2000 May;20(4):228-32 [PMID: 10999672]
  19. PLoS One. 2012;7(2):e30920 [PMID: 22319593]
  20. J Nerv Ment Dis. 1952 Oct;116(4):346-51 [PMID: 12991095]
  21. Brain Struct Funct. 2012 Oct;217(4):783-96 [PMID: 22270812]
  22. J Comp Neurol. 2005 Dec 5;493(1):154-66 [PMID: 16254997]
  23. Trends Cogn Sci. 2011 Feb;15(2):85-93 [PMID: 21167765]
  24. Headache. 2011 Oct;51(9):1358-73 [PMID: 21883197]
  25. J Neurosci. 2000 May 1;20(9):3310-8 [PMID: 10777794]
  26. Neurology. 1992 Sep;42(9):1727-32 [PMID: 1513461]
  27. Neurology. 2011 Oct 11;77(15):1465-72 [PMID: 21956721]
  28. Neuroimage. 2009 Feb 1;44(3):893-905 [PMID: 18976716]
  29. Brain Struct Funct. 2013 Jul;218(4):903-12 [PMID: 22760159]
  30. Pediatr Neurol. 2014 Sep;51(3):321-3 [PMID: 24997852]
  31. Neuroscientist. 2016 Dec;22(6):632-652 [PMID: 26290446]
  32. Neuroimage. 2006 Jul 1;31(3):968-80 [PMID: 16530430]
  33. Cephalalgia. 2010 Jul;30(7):804-14 [PMID: 20647171]
  34. Neuroimage. 2012 Aug 1;62(1):493-9 [PMID: 22587900]
  35. J AAPOS. 2010 Aug;14(4):317-22 [PMID: 20598927]
  36. Neurology. 2015 Feb 17;84(7):688-95 [PMID: 25609757]
  37. Curr Neurol Neurosci Rep. 2016 Jul;16(7):64 [PMID: 27181270]
  38. J Neurosci. 2013 Sep 25;33(39):15343-9 [PMID: 24068801]
  39. Pediatr Neurol. 1998 Aug;19(2):105-8 [PMID: 9744628]
  40. Cephalalgia. 2016 May;36(6):526-33 [PMID: 26378082]
  41. Vision Res. 2001;41(10-11):1409-22 [PMID: 11322983]
  42. Headache. 2010 Jun;50(6):921-36 [PMID: 20487038]
  43. Proc Natl Acad Sci U S A. 1995 Aug 29;92 (18):8135-9 [PMID: 7667258]
  44. Cephalalgia. 2008 Jun;28(6):598-604 [PMID: 18422725]
  45. Nat Neurosci. 2004 Feb;7(2):189-95 [PMID: 14730305]
  46. Cephalalgia. 2016 Aug;36(9):875-86 [PMID: 26984967]
  47. Pain. 2000 Oct;88(1):41-52 [PMID: 11098098]
  48. Nat Rev Neurosci. 2009 Jan;10 (1):59-70 [PMID: 19096369]
  49. Cephalalgia. 2014 Dec;34(14):1125-33 [PMID: 24728304]
  50. Proc Natl Acad Sci U S A. 2001 Jan 16;98 (2):676-82 [PMID: 11209064]
  51. Cephalalgia. 2014 Oct;34(11):853-69 [PMID: 24694964]
  52. Neurology. 2007 Nov 20;69(21):1990-5 [PMID: 18025393]
  53. J Neurosci. 2006 May 10;26(19):5224-9 [PMID: 16687514]
  54. Trends Cogn Sci. 2004 Jun;8(6):239-41 [PMID: 15165543]
  55. Cephalalgia. 2016 Aug;36(9):899-908 [PMID: 27288354]
  56. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11050-5 [PMID: 10984517]
  57. Neuroimage. 1999 Feb;9(2):179-94 [PMID: 9931268]
  58. Neurology. 2007 Jan 30;68(5):343-9 [PMID: 17261680]
  59. Brain Connect. 2012;2(3):125-41 [PMID: 22642651]
  60. Comput Biomed Res. 1996 Jun;29(3):162-73 [PMID: 8812068]
  61. Cephalalgia. 2012 Jun;32(8):607-20 [PMID: 22623760]
  62. Headache. 2008 Jan;48(1):109-17 [PMID: 18184293]
  63. Pain. 2006 Dec 5;125(3):286-95 [PMID: 17069972]

Grants

  1. K24 NS064050/NINDS NIH HHS

Word Cloud

Created with Highcharts 10.0.0diseaseCMheadachepatientsrespondersnon-respondersshowedcorticalchangesmigrainefrequencycomparedthicknessfunctionaldays/monthfollowingconnectivitydurationrevealedbrainEM<15prophylactictreatmentwhetherprophylaxis=reversalstatusdifferencesusinggroupRS-FCanalysespainweekspost-treatmentprimarycortexSIParsOpMIseedLOCmayaimstudyidentifystructuralaccompaniedtransitionchronic≥15episodiconabotulinumtoxinABoNT-ASpecificallyexaminedresponsive11evidenceddefinedleast50%reductionwhoseremainedunchanged12surface-basedmorphometryalsoinvestigatedareasshowingdisplayedalteredresting-stateseed-to-voxelMigrainecharacteristicsmeasuredacrossgroupsincludedintensityPatientreports4priorpre-treatmentpostminuspremeasureservedclinicalendpointdeterminedassignmentscannedwithin2visitResultssignificantthickeningrightsomatosensoryanteriorinsulaaINSleftsuperiortemporalgyrusSTGparsopercularisadditionnegativelycorrelatedfronto-parietaltemporo-occipitalregionsexceptionmotoroppositepatternpositivelyassociatedversusseed-basedanti-correlationslateraloccipitaldorsomedialprefrontalcorticesDMPFCwhereasincreasedOverallfindingsdistinctmorphometricrevertedchangeElucidatingCNSinvolvedcriticaldiscoveringinterventionspreventslowprogressionaidevaluationtreatmentswellprovidemarkers"de-chronification"BrainChangesRespondersvsNon-RespondersChronicMigraine:MarkersDiseaseReversalBOTOX®fMRIgraymattertransformationnetworkpreventativetherapy

Similar Articles

Cited By