New insights from an old mutant: SPADIX4 governs fruiting body development but not hyphal fusion in Sordaria macrospora.

Ines Teichert, Miriam Lutomski, Ramona Märker, Minou Nowrousian, Ulrich Kück
Author Information
  1. Ines Teichert: Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND6/166, Universitätsstrasse 150, 44780, Bochum, Germany. ines.teichert@rub.de. ORCID
  2. Miriam Lutomski: Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND6/166, Universitätsstrasse 150, 44780, Bochum, Germany.
  3. Ramona Märker: Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND6/166, Universitätsstrasse 150, 44780, Bochum, Germany.
  4. Minou Nowrousian: Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND6/166, Universitätsstrasse 150, 44780, Bochum, Germany.
  5. Ulrich Kück: Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND6/166, Universitätsstrasse 150, 44780, Bochum, Germany.

Abstract

During the sexual life cycle of filamentous fungi, multicellular fruiting bodies are generated for the dispersal of spores. The filamentous ascomycete Sordaria macrospora has a long history as a model system for studying fruiting body formation, and two collections of sterile mutants have been generated. However, for most of these mutants, the underlying genetic defect remains unknown. Here, we investigated the mutant spadix (spd) that was generated by X-ray mutagenesis in the 1950s and terminates sexual development after the formation of pre-fruiting bodies (protoperithecia). We sequenced the spd genome and found a 22 kb deletion affecting four genes, which we termed spd1-4. Generation of deletion strains revealed that only spd4 is required for fruiting body formation. Although sterility in S. macrospora is often coupled with a vegetative hyphal fusion defect, Δspd4 was still capable of fusion. This feature distinguishes SPD4 from many other regulators of sexual development. Remarkably, GFP-tagged SPD4 accumulated in the nuclei of vegetative hyphae and fruiting body initials, the ascogonial coils, but not in sterile tissue from the developing protoperithecium. Our results point to SPD4 as a specific determinant of fruiting body formation. Research on SPD4 will, therefore, contribute to understanding cellular reprogramming during initiation of sexual development in fungi.

Keywords

References

  1. Genetics. 2014 Mar;196(3):729-44 [PMID: 24407906]
  2. Fungal Genet Biol. 2007 Dec;44(12):1219-30 [PMID: 17517525]
  3. Fungal Genet Biol. 2011 Apr;48(4):388-99 [PMID: 21134480]
  4. Genetics. 2012 Apr;190(4):1389-404 [PMID: 22298702]
  5. Fungal Genet Biol. 2016 May;90:31-38 [PMID: 26439752]
  6. J Biotechnol. 2014 Jan;169:51-62 [PMID: 24216341]
  7. Mol Microbiol. 2013 Dec;90(5):1125-45 [PMID: 24279728]
  8. PLoS One. 2016 Feb 18;11(2):e0149548 [PMID: 26890813]
  9. BMC Genomics. 2012 Sep 27;13:511 [PMID: 23016559]
  10. Genetics. 2009 Jul;182(3):771-83 [PMID: 19416940]
  11. PLoS Genet. 2014 Sep 04;10(9):e1004582 [PMID: 25188365]
  12. Mol Microbiol. 2015 Mar;95(6):988-1005 [PMID: 25402961]
  13. Fungal Genet Biol. 2010 Oct;47(10):855-68 [PMID: 20601042]
  14. Microbiol Res. 2012 Jun 20;167(6):339-45 [PMID: 22554685]
  15. Eukaryot Cell. 2012 Dec;11(12):1463-71 [PMID: 23042130]
  16. Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10352-7 [PMID: 16801547]
  17. Front Physiol. 2013 Sep 06;4:244 [PMID: 24046747]
  18. Z Vererbungsl. 1958;89(5):729-46 [PMID: 13648694]
  19. Bioessays. 2008 Nov;30(11-12):1193-203 [PMID: 18937373]
  20. Adv Genet. 2014;87:199-244 [PMID: 25311923]
  21. Curr Biol. 2001 Nov 27;11(23 ):1815-24 [PMID: 11728304]
  22. Eukaryot Cell. 2007 May;6(5):831-43 [PMID: 17351077]
  23. PLoS Genet. 2014 Nov 20;10 (11):e1004783 [PMID: 25412208]
  24. Gene. 2006 Aug 15;378:1-10 [PMID: 16814491]
  25. Z Indukt Abstamm Vererbungsl. 1956;87(4):625-6 [PMID: 13393177]
  26. Dev Cell. 2014 May 27;29(4):406-20 [PMID: 24871947]
  27. Fungal Genet Biol. 2014 Jul;68:48-59 [PMID: 24792494]
  28. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  29. PLoS One. 2012;7(5):e37488 [PMID: 22662159]
  30. Eukaryot Cell. 2012 Nov;11(11):1345-52 [PMID: 22962278]
  31. G3 (Bethesda). 2012 Feb;2(2):261-70 [PMID: 22384404]
  32. Nature. 2015 Nov 26;527(7579):521-4 [PMID: 26503056]
  33. PLoS One. 2014 Oct 20;9(10 ):e110398 [PMID: 25329823]
  34. Mutat Res. 1984 Jan;125(1):33-42 [PMID: 6690911]
  35. Genomics. 2000 May 1;65(3):266-73 [PMID: 10857750]
  36. Fungal Genet Biol. 2015 Aug;81:120-31 [PMID: 25892048]
  37. Eukaryot Cell. 2005 May;4(5):920-30 [PMID: 15879526]
  38. Gene. 1992 Jan 2;110(1):119-22 [PMID: 1544568]
  39. Eukaryot Cell. 2010 Dec;9(12):1856-66 [PMID: 20952581]
  40. Fungal Genet Biol. 2014 Sep;70:94-103 [PMID: 25064063]
  41. Eukaryot Cell. 2010 Aug;9(8):1236-50 [PMID: 20543063]
  42. Mol Microbiol. 2012 Apr;84(2):310-23 [PMID: 22375702]
  43. Curr Genet. 2007 Nov;52(5-6):259-66 [PMID: 17929020]
  44. Genetics. 2013 Nov;195(3):883-98 [PMID: 24037267]
  45. Mol Plant Microbe Interact. 2015 Jan;28(1):69-85 [PMID: 25303335]
  46. Nucleic Acids Res. 2016 Jan 4;44(D1):D294-300 [PMID: 26615199]
  47. Genetics. 1996 Dec;144(4):1425-36 [PMID: 8978031]
  48. PLoS One. 2012;7(8):e42565 [PMID: 22900028]
  49. Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13445-50 [PMID: 16938837]
  50. Eukaryot Cell. 2008 Jan;7(1):162-71 [PMID: 18039941]
  51. PLoS Genet. 2014 Nov 20;10 (11):e1004762 [PMID: 25411845]
  52. Eukaryot Cell. 2007 Dec;6(12):2323-31 [PMID: 17933907]
  53. BMC Microbiol. 2005 Nov 03;5:64 [PMID: 16266439]
  54. Fungal Genet Biol. 2004 Nov;41(11):982-97 [PMID: 15465387]
  55. Mol Microbiol. 2007 May;64(4):923-37 [PMID: 17501918]
  56. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  57. Genetics. 2008 Sep;180(1):191-206 [PMID: 18723884]
  58. Appl Environ Microbiol. 2007 May;73(10):3412-22 [PMID: 17400783]
  59. Genetics. 2009 Feb;181(2):497-510 [PMID: 19064710]
  60. Dev Biol. 1976 Nov;54(1):23-36 [PMID: 1001820]
  61. Eukaryot Cell. 2011 Aug;10(8):1100-9 [PMID: 21666072]
  62. Genetics. 2006 Mar;172(3):1521-33 [PMID: 16387884]
  63. Fungal Genet Biol. 2013 Jul;56:87-97 [PMID: 23684536]
  64. Mol Plant Pathol. 2013 Sep;14 (7):708-18 [PMID: 23724858]
  65. Fungal Genet Biol. 2013 Dec;61:50-60 [PMID: 24095659]
  66. Curr Opin Microbiol. 2009 Dec;12(6):608-15 [PMID: 19864177]
  67. Autophagy. 2013 Jan;9(1):33-49 [PMID: 23064313]
  68. Curr Opin Microbiol. 2010 Dec;13(6):677-83 [PMID: 20880736]
  69. PLoS Genet. 2010 Apr 08;6(4):e1000891 [PMID: 20386741]

MeSH Term

Cell Nucleus
Fruiting Bodies, Fungal
Fungal Proteins
Hyphae
Mutagenesis
Sordariales

Chemicals

Fungal Proteins

Word Cloud

Created with Highcharts 10.0.0fruitingsexualbodydevelopmentmacrosporaformationfusionSPD4generatedSordariahyphalfilamentousfungibodiessterilemutantsdefectspddeletionvegetativelifecyclemulticellulardispersalsporesascomycetelonghistorymodelsystemstudyingtwocollectionsHoweverunderlyinggeneticremainsunknowninvestigatedmutantspadixX-raymutagenesis1950sterminatespre-fruitingprotoperitheciasequencedgenomefound22 kbaffectingfourgenestermedspd1-4Generationstrainsrevealedspd4requiredAlthoughsterilitySoftencoupledΔspd4stillcapablefeaturedistinguishesmanyregulatorsRemarkablyGFP-taggedaccumulatednucleihyphaeinitialsascogonialcoilstissuedevelopingprotoperitheciumresultspointspecificdeterminantResearchwillthereforecontributeunderstandingcellularreprogramminginitiationNewinsightsoldmutant:SPADIX4governsFungalVegetativeWhole-genomesequencing

Similar Articles

Cited By