Intrinsic Cellular Properties and Connectivity Density Determine Variable Clustering Patterns in Randomly Connected Inhibitory Neural Networks.

Scott Rich, Victoria Booth, Michal Zochowski
Author Information
  1. Scott Rich: Applied and Interdisciplinary Mathematics, University of Michigan Ann Arbor, MI, USA.
  2. Victoria Booth: Departments of Mathematics and Anesthesiology, University of Michigan Ann Arbor, MI, USA.
  3. Michal Zochowski: Departments of Physics and Biophysics, University of Michigan Ann Arbor, MI, USA.

Abstract

The plethora of inhibitory interneurons in the hippocampus and cortex play a pivotal role in generating rhythmic activity by clustering and synchronizing cell firing. Results of our simulations demonstrate that both the intrinsic cellular properties of neurons and the degree of network connectivity affect the characteristics of clustered dynamics exhibited in randomly connected, heterogeneous inhibitory networks. We quantify intrinsic cellular properties by the neuron's current-frequency relation (IF curve) and Phase Response Curve (PRC), a measure of how perturbations given at various phases of a neurons firing cycle affect subsequent spike timing. We analyze network bursting properties of networks of neurons with Type I or Type II properties in both excitability and PRC profile; Type I PRCs strictly show phase advances and IF curves that exhibit frequencies arbitrarily close to zero at firing threshold while Type II PRCs display both phase advances and delays and IF curves that have a non-zero frequency at threshold. Type II neurons whose properties arise with or without an M-type adaptation current are considered. We analyze network dynamics under different levels of cellular heterogeneity and as intrinsic cellular firing frequency and the time scale of decay of synaptic inhibition are varied. Many of the dynamics exhibited by these networks diverge from the predictions of the interneuron network gamma (ING) mechanism, as well as from results in all-to-all connected networks. Our results show that randomly connected networks of Type I neurons synchronize into a single cluster of active neurons while networks of Type II neurons organize into two mutually exclusive clusters segregated by the cells' intrinsic firing frequencies. Networks of Type II neurons containing the adaptation current behave similarly to networks of either Type I or Type II neurons depending on network parameters; however, the adaptation current creates differences in the cluster dynamics compared to those in networks of Type I or Type II neurons. To understand these results, we compute neuronal PRCs calculated with a perturbation matching the profile of the synaptic current in our networks. Differences in profiles of these PRCs across the different neuron types reveal mechanisms underlying the divergent network dynamics.

Keywords

References

  1. J Neurosci. 1996 Oct 15;16(20):6402-13 [PMID: 8815919]
  2. J Comput Neurosci. 2008 Oct;25(2):262-81 [PMID: 18297384]
  3. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1867-72 [PMID: 10677548]
  4. Neural Comput. 1995 Mar;7(2):307-37 [PMID: 8974733]
  5. J Math Neurosci. 2015 Dec;5(1):2 [PMID: 26458901]
  6. Nat Rev Neurosci. 2007 Jan;8(1):45-56 [PMID: 17180162]
  7. J Neurosci. 2009 Apr 1;29(13):4140-54 [PMID: 19339609]
  8. Cereb Cortex. 2013 Feb;23(2):423-41 [PMID: 22357664]
  9. PLoS One. 2008;3(12):e3947 [PMID: 19079601]
  10. Trends Cogn Sci. 2005 Oct;9(10):474-80 [PMID: 16150631]
  11. J Neurosci. 2007 Feb 21;27(8):2058-73 [PMID: 17314301]
  12. Annu Rev Neurosci. 1995;18:193-222 [PMID: 7605061]
  13. Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13222-7 [PMID: 12235359]
  14. Nat Rev Neurosci. 2004 Oct;5(10):793-807 [PMID: 15378039]
  15. J Neurosci. 1999 Mar 1;19(5):1736-53 [PMID: 10024360]
  16. Neuron. 2012 Sep 6;75(5):875-88 [PMID: 22958827]
  17. Neuron. 2009 Sep 24;63(6):727-32 [PMID: 19778503]
  18. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Dec;48(6):4810-4814 [PMID: 9961165]
  19. Neural Comput. 2001 Jun;13(6):1285-310 [PMID: 11387047]
  20. Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):3101-6 [PMID: 23300282]
  21. Front Comput Neurosci. 2013 Oct 22;7:144 [PMID: 24155715]
  22. J Physiol. 2003 Nov 1;552(Pt 3):673-89 [PMID: 12923216]
  23. J Physiol. 2012 Oct 1;590(19):4735-59 [PMID: 22869012]
  24. J Neurophysiol. 1997 Jan;77(1):24-42 [PMID: 9120566]
  25. Biosystems. 2005 Jan-Mar;79(1-3):173-81 [PMID: 15649602]
  26. PLoS Comput Biol. 2011 May;7(5):e1002062 [PMID: 21625571]
  27. J Neurosci. 2015 Nov 25;35(47):15682-95 [PMID: 26609160]
  28. PLoS Comput Biol. 2015 Mar 16;11(3):e1004112 [PMID: 25775448]
  29. J Comput Neurosci. 1998 Dec;5(4):407-20 [PMID: 9877022]
  30. J Physiol. 2011 Feb 1;589(Pt 3):609-27 [PMID: 21115639]
  31. Hippocampus. 2010 Mar;20(3):423-46 [PMID: 19489002]
  32. Neural Comput. 2012 Dec;24(12):3111-25 [PMID: 22970869]
  33. J Neurophysiol. 2009 Jul;102(1):387-98 [PMID: 19420126]
  34. Front Neural Circuits. 2013 Dec 11;7:194 [PMID: 24376399]
  35. J Neurosci. 2009 Apr 22;29(16):5218-33 [PMID: 19386918]
  36. Biophys J. 2004 Oct;87(4):2283-98 [PMID: 15454430]
  37. J Physiol. 1952 Aug;117(4):500-44 [PMID: 12991237]
  38. J Comput Neurosci. 2010 Apr;28(2):305-21 [PMID: 20135213]
  39. PLoS Comput Biol. 2011 Nov;7(11):e1002281 [PMID: 22125486]
  40. J Neurosci. 2006 Nov 22;26(47):12325-38 [PMID: 17122058]
  41. Physiol Rev. 2010 Jul;90(3):1195-268 [PMID: 20664082]
  42. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):021908 [PMID: 19792152]
  43. J Neurophysiol. 2004 Oct;92(4):2283-94 [PMID: 15381746]
  44. Biophys J. 2007 Jan 15;92(2):683-95 [PMID: 17192317]
  45. Neural Comput. 2001 May;13(5):959-92 [PMID: 11359640]
  46. J Physiol. 2012 Feb 15;590(4):695-702 [PMID: 22199168]
  47. Front Synaptic Neurosci. 2013 Jul 30;5:2 [PMID: 23908628]
  48. PLoS Comput Biol. 2012;8(4):e1002478 [PMID: 22511861]
  49. J Neurophysiol. 2016 Aug 1;116(2):232-51 [PMID: 26912589]
  50. Prog Neurobiol. 1998 Aug;55(6):563-75 [PMID: 9670218]
  51. J Comput Neurosci. 1994 Dec;1(4):313-21 [PMID: 8792237]
  52. J Physiol. 1948 Mar 15;107(2):165-81 [PMID: 16991796]
  53. Brain Res. 2009 Mar 25;1262:115-29 [PMID: 19171126]
  54. Hippocampus. 2012 Jul;22(7):1597-621 [PMID: 22252986]
  55. Neural Comput. 2006 May;18(5):1066-110 [PMID: 16595058]
  56. Int J Psychophysiol. 2000 Dec 1;38(3):315-36 [PMID: 11102670]

Grants

  1. R01 EB018297/NIBIB NIH HHS

MeSH Term

Animals
Humans
Interneurons
Models, Theoretical
Nerve Net
Neural Inhibition

Word Cloud

Created with Highcharts 10.0.0TypeneuronsnetworksIInetworkfiringpropertiesdynamicsintrinsiccellularPRCsadaptationcurrentinhibitoryconnectedIFphaseresultsinterneuronsclusteringaffectexhibitedrandomlycurvePRCanalyzeprofileshowadvancescurvesfrequenciesthresholdfrequencydifferentsynapticclusterNetworksplethorahippocampuscortexplaypivotalrolegeneratingrhythmicactivitysynchronizingcellResultssimulationsdemonstratedegreeconnectivitycharacteristicsclusteredheterogeneousquantifyneuron'scurrent-frequencyrelationPhaseResponseCurvemeasureperturbationsgivenvariousphasescyclesubsequentspiketimingburstingexcitabilitystrictlyexhibitarbitrarilyclosezerodisplaydelaysnon-zerowhosearisewithoutM-typeconsideredlevelsheterogeneitytimescaledecayinhibitionvariedManydivergepredictionsinterneurongammaINGmechanismwellall-to-allsynchronizesingleactiveorganizetwomutuallyexclusiveclusterssegregatedcells'containingbehavesimilarlyeitherdependingparametershowevercreatesdifferencescomparedunderstandcomputeneuronalcalculatedperturbationmatchingDifferencesprofilesacrossneurontypesrevealmechanismsunderlyingdivergentIntrinsicCellularPropertiesConnectivityDensityDetermineVariableClusteringPatternsRandomlyConnectedInhibitoryNeuralM-currentcomputationalmodelresponsespike-frequencysynchrony

Similar Articles

Cited By