Glial Cell Contributions to Auditory Brainstem Development.

Karina S Cramer, Edwin W Rubel
Author Information
  1. Karina S Cramer: Department of Neurobiology and Behavior, University of California, Irvine Irvine, CA, USA.
  2. Edwin W Rubel: Virginia Merrill Bloedel Hearing Research Center, University of Washington Seattle, WA, USA.

Abstract

Glial cells, previously thought to have generally supporting roles in the central nervous system, are emerging as essential contributors to multiple aspects of neuronal circuit function and development. This review focuses on the contributions of glial cells to the development of auditory pathways in the brainstem. These pathways display specialized synapses and an unusually high degree of precision in circuitry that enables sound source localization. The development of these pathways thus requires highly coordinated molecular and cellular mechanisms. Several classes of glial cells, including astrocytes, oligodendrocytes and microglia, have now been explored in these circuits in both avian and mammalian brainstems. Distinct populations of astrocytes are found over the course of auditory brainstem maturation. Early appearing astrocytes are associated with spatial compartments in the avian auditory brainstem. Factors from late appearing astrocytes promote synaptogenesis and dendritic maturation, and astrocytes remain integral parts of specialized auditory synapses. Oligodendrocytes play a unique role in both birds and mammals in highly regulated myelination essential for proper timing to decipher interaural cues. Microglia arise early in brainstem development and may contribute to maturation of auditory pathways. Together these studies demonstrate the importance of non-neuronal cells in the assembly of specialized auditory brainstem circuits.

Keywords

References

  1. Glia. 2004 Aug 15;47(3):290-8 [PMID: 15252819]
  2. J Comp Neurol. 1989 May 22;283(4):5-73 [PMID: 2745749]
  3. PLoS One. 2011;6(11):e27383 [PMID: 22087304]
  4. J Comp Neurol. 1975 Dec 15;164(4):435-48 [PMID: 1206128]
  5. J Neurobiol. 2004 Jul;60(1):28-39 [PMID: 15188270]
  6. Brain Res. 1996 Oct 14;736(1-2):35-43 [PMID: 8930306]
  7. J Physiol. 2012 May 15;590(10):2317-31 [PMID: 22411007]
  8. J Neurosci. 1990 Oct;10(10):3227-46 [PMID: 2213141]
  9. Glia. 2016 Apr;64(4):487-94 [PMID: 26556176]
  10. Hear Res. 1984 Mar;13(3):277-83 [PMID: 6735934]
  11. J Neurosci. 1992 May;12(5):1698-708 [PMID: 1578264]
  12. Neural Dev. 2012 Aug 21;7:29 [PMID: 22908944]
  13. Dev Biol. 2004 May 1;269(1):26-35 [PMID: 15081355]
  14. Neurosignals. 2008;16(4):278-88 [PMID: 18635944]
  15. Front Neurol. 2016 Feb 01;7:9 [PMID: 26869989]
  16. Front Neural Circuits. 2014 May 15;8:49 [PMID: 24860434]
  17. J Neurosci. 1983 Jul;3(7):1373-8 [PMID: 6864252]
  18. Nat Commun. 2015 Aug 25;6:8073 [PMID: 26305015]
  19. J Neurosci. 2014 Apr 2;34(14):4914-9 [PMID: 24695710]
  20. J Comp Neurol. 1981 Nov 1;202(3):397-414 [PMID: 7298906]
  21. J Neurosci. 2005 Apr 6;25(14):3724-38 [PMID: 15814803]
  22. J Comp Neurol. 2009 May 1;514(1):92-106 [PMID: 19260071]
  23. Cell Tissue Res. 2015 Jul;361(1):65-75 [PMID: 25296716]
  24. J Neurosci. 1992 Mar;12(3):1001-9 [PMID: 1545231]
  25. Dev Neurobiol. 2008 Jul;68(8):1093-106 [PMID: 18498086]
  26. J Comp Neurol. 1995 Feb 20;352(4):607-25 [PMID: 7722003]
  27. J Neurosci. 1994 Mar;14(3 Pt 2):1701-9 [PMID: 8126564]
  28. J Comp Neurol. 2007 Oct 10;504(5):508-18 [PMID: 17702003]
  29. J Comp Neurol. 1992 Apr 22;318(4):415-25 [PMID: 1374444]
  30. J Neurosci. 1994 Oct;14(10):5973-85 [PMID: 7931557]
  31. Neuroscience. 2014 Oct 10;278:237-52 [PMID: 25158674]
  32. J Comp Neurol. 1981 Dec 10;203(3):309-33 [PMID: 7320232]
  33. Nature. 1998 May 21;393(6682):268-72 [PMID: 9607764]
  34. Neuroscience. 1982 Jun;7(6):1455-69 [PMID: 6289171]
  35. J Neurosci. 1999 Mar 15;19(6):2313-25 [PMID: 10066281]
  36. J Comp Neurol. 1991 Dec 22;314(4):707-20 [PMID: 1816272]
  37. J Comp Neurol. 1982 Aug 20;209(4):409-24 [PMID: 7130465]
  38. Nat Neurosci. 2010 Sep;13(9):1050-2 [PMID: 20676105]
  39. Nat Rev Neurosci. 2015 Dec;16(12 ):756-67 [PMID: 26585800]
  40. J Neurosci. 2013 Mar 13;33(11):4947-57 [PMID: 23486965]
  41. Nature. 1993 Jan 21;361(6409):258-60 [PMID: 8093806]
  42. Neuropharmacology. 2016 Nov;110(Pt B):563-573 [PMID: 26282119]
  43. J Comp Neurol. 1994 Oct 15;348(3):403-18 [PMID: 7844255]
  44. J Neurosci. 2010 Jan 6;30(1):70-80 [PMID: 20053889]
  45. J Comp Neurol. 1979 Jul 15;186(2):213-39 [PMID: 447882]
  46. J Neurosci. 2008 Jan 2;28(1):264-78 [PMID: 18171944]
  47. Dev Neurobiol. 2016 Feb;76(2):166-89 [PMID: 26014473]
  48. Neuron. 2013 Jun 5;78(5):923-35 [PMID: 23764291]
  49. J Neurophysiol. 1993 Apr;69(4):1192-6 [PMID: 8492158]
  50. Anat Embryol (Berl). 1998 Sep;198(3):213-35 [PMID: 9764976]
  51. J Comp Neurol. 2014 Apr 1;522(5):971-85 [PMID: 24115041]
  52. J Comp Neurol. 1991 Dec 22;314(4):684-706 [PMID: 1816271]
  53. J Comp Neurol. 1976 Apr 15;166(4):469-89 [PMID: 1270618]
  54. J Neurophysiol. 2011 Jul;106(1):4-14 [PMID: 21525367]
  55. Neuroscience. 2014 Sep 12;276:126-34 [PMID: 23820043]
  56. Neuroscience. 1982 Apr;7(4):809-36 [PMID: 7099420]
  57. J Neurosci. 2008 Jul 2;28(27):6914-25 [PMID: 18596166]
  58. J Comp Neurol. 2012 Apr 15;520(6):1262-77 [PMID: 22020566]
  59. J Comp Neurol. 1995 Mar 13;353(3):341-63 [PMID: 7751435]
  60. Physiol Behav. 2005 Oct 15;86(3):297-305 [PMID: 16202434]
  61. Neuron Glia Biol. 2004 Feb;1(1):65-72 [PMID: 18634607]
  62. J Comp Neurol. 1986 Dec 22;254(4):425-59 [PMID: 3805357]
  63. Front Neural Circuits. 2014 May 09;8:47 [PMID: 24847212]
  64. Nat Rev Neurosci. 2013 May;14(5):311-21 [PMID: 23595014]
  65. Dev Neurobiol. 2007 Dec;67(14):1957-74 [PMID: 17918244]
  66. Neuroscientist. 2003 Apr;9(2):127-43 [PMID: 12708617]
  67. J Neurosci. 2013 Aug 7;33(32):12954-69 [PMID: 23926251]
  68. Curr Opin Neurobiol. 2013 Dec;23(6):1027-33 [PMID: 23871217]
  69. J Comp Neurol. 2000 Oct 30;426(4):561-71 [PMID: 11027399]
  70. Glia. 2014 Dec;62(12):1992-2003 [PMID: 25103283]
  71. Nat Neurosci. 2015 May;18(5):683-9 [PMID: 25849987]

Grants

  1. P30 DC004661/NIDCD NIH HHS
  2. R03 DC011343/NIDCD NIH HHS
  3. U54 HD083091/NICHD NIH HHS
  4. R01 DC003829/NIDCD NIH HHS
  5. R01 DC010796/NIDCD NIH HHS

MeSH Term

Animals
Auditory Pathways
Brain Stem
Neuroglia

Word Cloud

Created with Highcharts 10.0.0auditorybrainstemastrocytescellsdevelopmentpathwaysspecializedmaturationnucleusGlialessentialglialsynapseshighlymicrogliacircuitsavianappearingpreviouslythoughtgenerallysupportingrolescentralnervoussystememergingcontributorsmultipleaspectsneuronalcircuitfunctionreviewfocusescontributionsdisplayunusuallyhighdegreeprecisioncircuitryenablessoundsourcelocalizationthusrequirescoordinatedmolecularcellularmechanismsSeveralclassesincludingoligodendrocytesnowexploredmammalianbrainstemsDistinctpopulationsfoundcourseEarlyassociatedspatialcompartmentsFactorslatepromotesynaptogenesisdendriticremainintegralpartsOligodendrocytesplayuniquerolebirdsmammalsregulatedmyelinationpropertimingdecipherinterauralcuesMicrogliaariseearlymaycontributeTogetherstudiesdemonstrateimportancenon-neuronalassemblyCellContributionsAuditoryBrainstemDevelopmentastrocytecalyxHelddelaylinemedialtrapezoidbodylaminarismagnocellularisoligodendrocyte

Similar Articles

Cited By